//Be Name Khoda
#include<bits/stdc++.h>
#include "factories.h"
#pragma GCC optimize("Ofast,unroll-loops")
using namespace std;
#define ll long long
#define all(x) x.begin(), x.end()
#define pii pair<int, int>
#define pll pair<ll, ll>
const ll mxn = 5e5 + 16, INF = 1e15 + 32;
ll n, m, q, w, ans;
ll st[mxn], fn[mxn], h[mxn], dis[mxn], c[mxn], dp[mxn][3], par[mxn][20];
vector<ll> f, g;
vector<pll> adj[mxn], G[mxn];
set<ll> s;
bitset<mxn> mark;
void DFS(int v) {
mark.set(v);
st[v] = q++, fn[v] = q, h[v] = w++;
for(int i = 1; i < 20; i++) {
par[v][i] = par[par[v][i - 1]][i - 1];
}
for(auto u : adj[v]) {
if(!mark[u.first]) {
par[u.first][0] = v;
dis[u.first] = dis[v] + u.second;
DFS(u.first);
fn[v] = fn[u.first];
}
} w--;
}
void Init(int N, int A[], int B[], int D[]) {
n = N;
for(int i = 0; i < n - 1; i++) {
adj[++A[i]].push_back({++B[i], D[i]});
adj[B[i]].push_back({A[i], D[i]});
}
q = w = 0;
DFS(1);
mark.reset();
}
inline void clr() {
for(auto u : f) {
c[u] = 0;
} f.clear();
return;
}
bool comp(int a, int b) {
return st[a] < st[b];
}
ll find_lca(ll v, ll u) {
if(v == u) return v;
if(h[v] > h[u]) {
swap(v, u);
}
for(int i = 19; i > -1; i--) {
if(h[u] - (1LL << i) < h[v]) continue;
u = par[u][i];
}
if(v == u) return v;
for(int i = 19; i > -1; i--) {
if(par[u][i] != par[v][i]) {
u = par[u][i], v = par[v][i];
}
} return par[v][0];
}
inline void build_Graph() {
stack<ll> sk;
sk.push(g[0]); dp[g[0]][0] = dp[g[0]][1] = dp[g[0]][2] = INF;
for(int i = 1; i < int(g.size()); i++) {
while(fn[sk.top()] < fn[g[i]]) sk.pop();
dp[g[i]][0] = dp[g[i]][1] = dp[g[i]][2] = INF;
G[sk.top()].push_back({g[i], dis[g[i]] - dis[sk.top()]});
sk.push(g[i]);
}
}
void solve_dp(int v) {
if(c[v] > 0) {
dp[v][c[v] % 2] = 0;
}
for(auto u : G[v]) {
solve_dp(u.first);
dp[v][2] = min(dp[v][2], dp[u.first][2]);
dp[v][1] = min(dp[v][1], dp[u.first][1] + u.second);
dp[v][0] = min(dp[v][0], dp[u.first][0] + u.second);
}
dp[v][2] = min(dp[v][2], dp[v][1] + dp[v][0]);
return;
}
ll Query(int S, int X[], int T, int Y[]) {
for(auto u : g) {
G[u].clear();
} clr(); s.clear(), f.clear(), g.clear();
for(int i = 0; i < S; i++) {
c[++X[i]] = 1; f.push_back(X[i]); s.insert(X[i]);
} for(int i = 0; i < T; i++) {
c[++Y[i]] += 2;
f.push_back(Y[i]); s.insert(Y[i]);
if(c[Y[i]] == 3) {
return 0;
}
}
sort(all(f), comp);
g = f;
for(int i = 0; i < int(f.size()) - 1; i++) {
w = find_lca(f[i], f[i + 1]);
if(!s.count(w)) {
s.insert(w);
g.push_back(w);
}
}
sort(all(g), comp);
build_Graph();
solve_dp(g[0]);
ans = dp[g[0]][2];
return ans;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
36 ms |
24268 KB |
Output is correct |
2 |
Correct |
1287 ms |
43208 KB |
Output is correct |
3 |
Correct |
1361 ms |
43040 KB |
Output is correct |
4 |
Correct |
1322 ms |
43280 KB |
Output is correct |
5 |
Correct |
1125 ms |
43392 KB |
Output is correct |
6 |
Correct |
941 ms |
42976 KB |
Output is correct |
7 |
Correct |
1335 ms |
42928 KB |
Output is correct |
8 |
Correct |
1313 ms |
43320 KB |
Output is correct |
9 |
Correct |
1099 ms |
43460 KB |
Output is correct |
10 |
Correct |
931 ms |
42980 KB |
Output is correct |
11 |
Correct |
1297 ms |
43088 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
16 ms |
24140 KB |
Output is correct |
2 |
Correct |
1662 ms |
190896 KB |
Output is correct |
3 |
Correct |
2441 ms |
195328 KB |
Output is correct |
4 |
Correct |
1062 ms |
187876 KB |
Output is correct |
5 |
Correct |
2102 ms |
236120 KB |
Output is correct |
6 |
Correct |
2600 ms |
197416 KB |
Output is correct |
7 |
Correct |
2490 ms |
76704 KB |
Output is correct |
8 |
Correct |
1096 ms |
76012 KB |
Output is correct |
9 |
Correct |
1956 ms |
83808 KB |
Output is correct |
10 |
Correct |
2446 ms |
78076 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
36 ms |
24268 KB |
Output is correct |
2 |
Correct |
1287 ms |
43208 KB |
Output is correct |
3 |
Correct |
1361 ms |
43040 KB |
Output is correct |
4 |
Correct |
1322 ms |
43280 KB |
Output is correct |
5 |
Correct |
1125 ms |
43392 KB |
Output is correct |
6 |
Correct |
941 ms |
42976 KB |
Output is correct |
7 |
Correct |
1335 ms |
42928 KB |
Output is correct |
8 |
Correct |
1313 ms |
43320 KB |
Output is correct |
9 |
Correct |
1099 ms |
43460 KB |
Output is correct |
10 |
Correct |
931 ms |
42980 KB |
Output is correct |
11 |
Correct |
1297 ms |
43088 KB |
Output is correct |
12 |
Correct |
16 ms |
24140 KB |
Output is correct |
13 |
Correct |
1662 ms |
190896 KB |
Output is correct |
14 |
Correct |
2441 ms |
195328 KB |
Output is correct |
15 |
Correct |
1062 ms |
187876 KB |
Output is correct |
16 |
Correct |
2102 ms |
236120 KB |
Output is correct |
17 |
Correct |
2600 ms |
197416 KB |
Output is correct |
18 |
Correct |
2490 ms |
76704 KB |
Output is correct |
19 |
Correct |
1096 ms |
76012 KB |
Output is correct |
20 |
Correct |
1956 ms |
83808 KB |
Output is correct |
21 |
Correct |
2446 ms |
78076 KB |
Output is correct |
22 |
Correct |
4177 ms |
212120 KB |
Output is correct |
23 |
Correct |
3691 ms |
213768 KB |
Output is correct |
24 |
Correct |
5109 ms |
219100 KB |
Output is correct |
25 |
Correct |
4788 ms |
222668 KB |
Output is correct |
26 |
Correct |
4484 ms |
204884 KB |
Output is correct |
27 |
Correct |
4194 ms |
246640 KB |
Output is correct |
28 |
Correct |
2513 ms |
205072 KB |
Output is correct |
29 |
Correct |
4339 ms |
204012 KB |
Output is correct |
30 |
Correct |
4370 ms |
203216 KB |
Output is correct |
31 |
Correct |
4367 ms |
204060 KB |
Output is correct |
32 |
Correct |
2365 ms |
90592 KB |
Output is correct |
33 |
Correct |
1659 ms |
84728 KB |
Output is correct |
34 |
Correct |
2323 ms |
75488 KB |
Output is correct |
35 |
Correct |
2250 ms |
75364 KB |
Output is correct |
36 |
Correct |
2827 ms |
76304 KB |
Output is correct |
37 |
Correct |
2728 ms |
76156 KB |
Output is correct |