답안 #492784

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
492784 2021-12-08T22:09:03 Z maksim1744 Lucky Numbers (RMI19_lucky) C++17
28 / 100
1 ms 460 KB
/*
    author:  Maksim1744
    created: 09.12.2021 00:29:14
*/

#include "bits/stdc++.h"

using namespace std;

using ll = long long;
using ld = long double;

#define mp   make_pair
#define pb   push_back
#define eb   emplace_back

#define sum(a)     ( accumulate ((a).begin(), (a).end(), 0ll))
#define mine(a)    (*min_element((a).begin(), (a).end()))
#define maxe(a)    (*max_element((a).begin(), (a).end()))
#define mini(a)    ( min_element((a).begin(), (a).end()) - (a).begin())
#define maxi(a)    ( max_element((a).begin(), (a).end()) - (a).begin())
#define lowb(a, x) ( lower_bound((a).begin(), (a).end(), (x)) - (a).begin())
#define uppb(a, x) ( upper_bound((a).begin(), (a).end(), (x)) - (a).begin())

template<typename T>             vector<T>& operator--            (vector<T> &v){for (auto& i : v) --i;            return  v;}
template<typename T>             vector<T>& operator++            (vector<T> &v){for (auto& i : v) ++i;            return  v;}
template<typename T>             istream& operator>>(istream& is,  vector<T> &v){for (auto& i : v) is >> i;        return is;}
template<typename T>             ostream& operator<<(ostream& os,  vector<T>  v){for (auto& i : v) os << i << ' '; return os;}
template<typename T, typename U> pair<T,U>& operator--           (pair<T, U> &p){--p.first; --p.second;            return  p;}
template<typename T, typename U> pair<T,U>& operator++           (pair<T, U> &p){++p.first; ++p.second;            return  p;}
template<typename T, typename U> istream& operator>>(istream& is, pair<T, U> &p){is >> p.first >> p.second;        return is;}
template<typename T, typename U> ostream& operator<<(ostream& os, pair<T, U>  p){os << p.first << ' ' << p.second; return os;}
template<typename T, typename U> pair<T,U> operator-(pair<T,U> a, pair<T,U> b){return mp(a.first-b.first, a.second-b.second);}
template<typename T, typename U> pair<T,U> operator+(pair<T,U> a, pair<T,U> b){return mp(a.first+b.first, a.second+b.second);}
template<typename T, typename U> void umin(T& a, U b){if (a > b) a = b;}
template<typename T, typename U> void umax(T& a, U b){if (a < b) a = b;}

#ifdef HOME
#define SHOW_COLORS
#include "/mnt/c/Libs/tools/print.cpp"
#else
#define show(...) void(0)
#define debugf(fun)   fun
#define debugv(var)   var
#define mclock    void(0)
#define shows     void(0)
#define debug  if (false)
#endif

namespace mint_ns {
template<auto P>
struct Modular {
    using value_type = decltype(P);
    value_type value;

    Modular(long long k = 0) : value(norm(k)) {}

    friend Modular<P>& operator += (      Modular<P>& n, const Modular<P>& m) { n.value += m.value; if (n.value >= P) n.value -= P; return n; }
    friend Modular<P>  operator +  (const Modular<P>& n, const Modular<P>& m) { Modular<P> r = n; return r += m; }

    friend Modular<P>& operator -= (      Modular<P>& n, const Modular<P>& m) { n.value -= m.value; if (n.value < 0)  n.value += P; return n; }
    friend Modular<P>  operator -  (const Modular<P>& n, const Modular<P>& m) { Modular<P> r = n; return r -= m; }
    friend Modular<P>  operator -  (const Modular<P>& n)                      { return Modular<P>(-n.value); }

    friend Modular<P>& operator *= (      Modular<P>& n, const Modular<P>& m) { n.value = n.value * 1ll * m.value % P; return n; }
    friend Modular<P>  operator *  (const Modular<P>& n, const Modular<P>& m) { Modular<P> r = n; return r *= m; }

    friend Modular<P>& operator /= (      Modular<P>& n, const Modular<P>& m) { return n *= m.inv(); }
    friend Modular<P>  operator /  (const Modular<P>& n, const Modular<P>& m) { Modular<P> r = n; return r /= m; }

    Modular<P>& operator ++ (   ) { return *this += 1; }
    Modular<P>& operator -- (   ) { return *this -= 1; }
    Modular<P>  operator ++ (int) { Modular<P> r = *this; *this += 1; return r; }
    Modular<P>  operator -- (int) { Modular<P> r = *this; *this -= 1; return r; }

    friend bool operator == (const Modular<P>& n, const Modular<P>& m) { return n.value == m.value; }
    friend bool operator != (const Modular<P>& n, const Modular<P>& m) { return n.value != m.value; }

    explicit    operator       int() const { return value; }
    explicit    operator      bool() const { return value; }
    explicit    operator long long() const { return value; }

    constexpr static value_type mod()      { return     P; }

    value_type norm(long long k) {
        if (!(-P <= k && k < P)) k %= P;
        if (k < 0) k += P;
        return k;
    }

    Modular<P> inv() const {
        value_type a = value, b = P, x = 0, y = 1;
        while (a != 0) { value_type k = b / a; b -= k * a; x -= k * y; swap(a, b); swap(x, y); }
        return Modular<P>(x);
    }
};
template<auto P> Modular<P> pow(Modular<P> m, long long p) {
    Modular<P> r(1);
    while (p) {
        if (p & 1) r *= m;
        m *= m;
        p >>= 1;
    }
    return r;
}

template<auto P> ostream& operator << (ostream& o, const Modular<P>& m) { return o << m.value; }
template<auto P> istream& operator >> (istream& i,       Modular<P>& m) { long long k; i >> k; m.value = m.norm(k); return i; }
template<auto P> string   to_string(const Modular<P>& m) { return to_string(m.value); }

using Mint = Modular<1000000007>;
// using Mint = Modular<998244353>;
// using Mint = long double;

vector<Mint> f, fi;
void init_C(int n) {
    f.assign(n, 1); fi.assign(n, 1);
    for (int i = 2; i < n; ++i) f[i] = f[i - 1] * i;
    fi.back() = Mint(1) / f.back();
    for (int i = n - 2; i >= 0; --i) fi[i] = fi[i + 1] * (i + 1);
}
Mint C(int n, int k) {
    if (k < 0 || k > n) return 0;
    else return f[n] * fi[k] * fi[n - k];
}
}
using namespace mint_ns;

template<typename T, int N>
struct Matrix {
    array<array<T, N>, N> m;

    Matrix() {
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                m[i][j] = 0;
            }
        }
    }
    Matrix(std::initializer_list<std::initializer_list<T>> s) {
        int i = 0;
        for (auto it = s.begin(); it != s.end(); ++it) {
            int j = 0;
            for (auto it2 = it->begin(); it2 != it->end(); ++it2) {
                m[i][j] = *it2;
                ++j;
            }
            ++i;
        }
    }

    static Matrix E() {
        Matrix e;
        for (int i = 0; i < N; ++i) {
            e[i][i] = 1;
        }
        return e;
    }

    array<T, N> &operator[](int i) {
        return m[i];
    }

    const array<T, N> &operator[](int i) const {
        return m[i];
    }

    Matrix operator * (const Matrix &b) {
        Matrix c;
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                for (int k = 0; k < N; ++k) {
                    c[i][k] += m[i][j] * b[j][k];
                }
            }
        }
        return c;
    }

    Matrix &operator *= (const Matrix &other) {
        *this = (*this) * other;
        return *this;
    }

    Matrix &operator *= (const T &x) {
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                m[i][j] *= x;
            }
        }
        return *this;
    }
    Matrix operator * (const T &x) {
        Matrix a = *this;
        a *= x;
        return a;
    }

    Matrix &operator /= (const T &x) {
        T inv = T(1) / x;
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                m[i][j] *= inv;
            }
        }
        return *this;
    }
    Matrix operator / (const T &x) {
        Matrix a = *this;
        a /= x;
        return a;
    }

    Matrix &operator += (const Matrix &other) {
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                m[i][j] += other[i][j];
            }
        }
        return *this;
    }
    Matrix operator + (const Matrix &other) {
        Matrix a = *this;
        a += other;
        return a;
    }

    Matrix &operator -= (const Matrix &other) {
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                m[i][j] -= other[i][j];
            }
        }
        return *this;
    }
    Matrix operator - (const Matrix &other) {
        Matrix a = *this;
        a -= other;
        return a;
    }
};

template<typename T, int N>
Matrix<T, N> pow(Matrix<T, N> m, ll p) {
    Matrix<T, N> res = Matrix<T, N>::E();
    while (p) {
        if (p & 1) res *= m;
        m *= m;
        p >>= 1;
    }
    return res;
}

array<array<Mint, 4>, 30> dp;
using M = Matrix<Mint, 4>;
array<M, 10> transitions;

int main() {
    ios_base::sync_with_stdio(false); cin.tie(NULL);

    int n, q;
    cin >> n >> q;
    assert(q == 0);
    string s;
    cin >> s;

    for (int i = 0; i < 30; ++i) {
        for (int j = 0; j < dp[i].size(); ++j) {
            dp[i][j] = 0;
        }
    }

    vector<int> v;
    for (char c : s)
        v.pb(c - '0');

    auto get_ind = [&](int num, int b) {
        return (num == 1) + (b) * 2;
    };

    M m = M::E();
    for (int i = 0; i < n; ++i) {
        M cur;
        for (int prev = 0; prev < 2; ++prev) {
            for (int next = 0; next < 10; ++next) {
                if (prev == 1 && next == 3) continue;
                if (next <= v[i]) {
                    cur[get_ind(next, next == v[i])][get_ind(prev, 1)]++;
                }
                cur[get_ind(next, 0)][get_ind(prev, 0)]++;
            }
        }
        m = cur * m;
    }

    Mint ans = 0;
    for (int i = 0; i < 4; ++i)
        ans += m[i][get_ind(0, 1)];
    cout << ans << '\n';

    return 0;
}

Compilation message

lucky.cpp: In function 'int main()':
lucky.cpp:268:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::array<mint_ns::Modular<1000000007>, 4>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  268 |         for (int j = 0; j < dp[i].size(); ++j) {
      |                         ~~^~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Runtime error 1 ms 460 KB Execution killed with signal 6
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Runtime error 1 ms 460 KB Execution killed with signal 6
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Runtime error 1 ms 460 KB Execution killed with signal 6
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Runtime error 1 ms 460 KB Execution killed with signal 6
8 Halted 0 ms 0 KB -