Submission #491058

# Submission time Handle Problem Language Result Execution time Memory
491058 2021-11-30T06:08:17 Z sberens Mecho (IOI09_mecho) C++17
38 / 100
565 ms 6288 KB
#include <bits/stdc++.h>

#include <ext/pb_ds/assoc_container.hpp>

using namespace __gnu_pbds;
template<typename K> using hset = gp_hash_table<K, null_type>;
template<typename K, typename V> using hmap = gp_hash_table<K, V>;


using namespace std;

#define all(x) (x).begin(), (x).end()
#define pb push_back
#define eb emplace_back
#define smax(x, y) (x = max(x, y))
#define smin(x, y) (x = min(x, y))

#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define F0R(i, a) FOR(i,0,a)
#define ROF(i, a, b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i, a) ROF(i,0,a)


using ll = long long;
using ld = long double;

template<typename T>
using vv = vector<vector<T>>;

using vi = vector<int>;
using ii = array<int, 2>;
using vii = vector<ii>;
using vvi = vv<int>;

using vll = vector<ll>;
using l2 = array<ll, 2>;
using vl2 = vector<l2>;
using vvll = vv<ll>;

template<typename T>
using minq = priority_queue<T, vector<T>, greater<T>>;
template<typename T>
using maxq = priority_queue<T>;

const ll M = 1000000007;
const ll infll = M * M;

template<typename IN>
IN discrete_binary_search(function<bool(IN)> predicate, IN low = 0, IN high = numeric_limits<IN>::max()) {
    while (low < high) {
        IN middle = low + (high - low) / 2; // todo std::midpoint in cpp 2020
        if (predicate(middle))
            high = middle;
        else low = middle + 1;
    }
    return low;
}

vii dirs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};

vii adjc(int x, int y) {
    vii res;
    for (auto [dx, dy] : dirs)
        res.pb({x + dx, y + dy});
    return res;
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    int n, s;
    cin >> n >> s;
    vv<char> g(n, vector<char>(n));
    int mr, mc, dr, dc;
    vii hives;
    F0R(i, n) {
        F0R(j, n) {
            char x;
            cin >> x;
            g[i][j] = x;
            if (x == 'M') {
                mr = i;
                mc = j;
            } else if (x == 'H') {
                hives.pb({i, j});
            } else if (x == 'D') {
                dr = i;
                dc = j;
            }
        }
    }
    vvi beetime(n, vi(n, M));
    queue<ii> bees;
    for (auto [r, c] : hives) {
        bees.push({r, c});
        beetime[r][c] = 0;
    }

    F0R(t, n * n) {
        queue<ii> nextbees;
        while (!bees.empty()) {
            assert(bees.size() < n * n);
            auto [r, c] = bees.front(); bees.pop();
            for (auto [nr, nc] : adjc(r, c)) {
                if (0 <= nr && nr < n && 0 <= nc && nc < n && beetime[nr][nc] == M && (g[nr][nc] == 'G' || g[nr][nc] == 'M')) {
                    nextbees.push({nr, nc});
                    beetime[nr][nc] = t + 1;
                }
            }
        }
        swap(bees, nextbees);
    }

    cout << discrete_binary_search<int>([&](int startt) -> bool {
        vvi seen(n, vi(n));
        queue<ii> bear;
        bear.push({mr, mc});
        seen[mr][mc] = 1;
        FOR(t, startt, n * n) {
            F0R(_, s) {
                queue<ii> nextbear;
                while (!bear.empty()) {
                    auto [r, c] = bear.front(); bear.pop();
                    if (r == dr && c == dc) return false;
                    if (beetime[r][c] == t - 1) continue;
                    for (auto [nr, nc] : adjc(r, c)) {
                        if (0 <= nr && nr < n && 0 <= nc && nc < n && (g[nr][nc] == 'G' || g[nr][nc] == 'D') && seen[nr][nc] == 0 && beetime[nr][nc] > t) {
                            nextbear.push({nr, nc});
                            seen[nr][nc] = 1;
                        }
                    }
                }
                swap(bear, nextbear);
                if (bear.empty()) return true;
            }
        }
        return true;

    }, 0, n * n) - 1 << '\n';
}
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 204 KB Output isn't correct
2 Incorrect 0 ms 204 KB Output isn't correct
3 Incorrect 0 ms 204 KB Output isn't correct
4 Incorrect 0 ms 204 KB Output isn't correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 402 ms 6076 KB Output is correct
8 Incorrect 0 ms 204 KB Output isn't correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Incorrect 1 ms 332 KB Output isn't correct
13 Incorrect 1 ms 332 KB Output isn't correct
14 Correct 2 ms 332 KB Output is correct
15 Incorrect 0 ms 204 KB Output isn't correct
16 Correct 0 ms 204 KB Output is correct
17 Incorrect 0 ms 204 KB Output isn't correct
18 Correct 1 ms 204 KB Output is correct
19 Incorrect 1 ms 204 KB Output isn't correct
20 Correct 1 ms 204 KB Output is correct
21 Incorrect 1 ms 204 KB Output isn't correct
22 Correct 1 ms 204 KB Output is correct
23 Incorrect 1 ms 332 KB Output isn't correct
24 Correct 1 ms 332 KB Output is correct
25 Incorrect 1 ms 332 KB Output isn't correct
26 Correct 1 ms 332 KB Output is correct
27 Incorrect 1 ms 332 KB Output isn't correct
28 Correct 1 ms 332 KB Output is correct
29 Incorrect 1 ms 332 KB Output isn't correct
30 Correct 1 ms 332 KB Output is correct
31 Incorrect 1 ms 332 KB Output isn't correct
32 Correct 1 ms 332 KB Output is correct
33 Incorrect 18 ms 1428 KB Output isn't correct
34 Correct 19 ms 1420 KB Output is correct
35 Correct 88 ms 1420 KB Output is correct
36 Incorrect 23 ms 1632 KB Output isn't correct
37 Correct 24 ms 1636 KB Output is correct
38 Correct 126 ms 1632 KB Output is correct
39 Incorrect 27 ms 2120 KB Output isn't correct
40 Correct 32 ms 2160 KB Output is correct
41 Correct 155 ms 2116 KB Output is correct
42 Incorrect 35 ms 2608 KB Output isn't correct
43 Correct 38 ms 2560 KB Output is correct
44 Correct 196 ms 2556 KB Output is correct
45 Incorrect 45 ms 3060 KB Output isn't correct
46 Correct 47 ms 3012 KB Output is correct
47 Correct 239 ms 3044 KB Output is correct
48 Incorrect 50 ms 3524 KB Output isn't correct
49 Correct 54 ms 3572 KB Output is correct
50 Correct 258 ms 3564 KB Output is correct
51 Incorrect 64 ms 4132 KB Output isn't correct
52 Correct 65 ms 4128 KB Output is correct
53 Correct 337 ms 4132 KB Output is correct
54 Incorrect 68 ms 4744 KB Output isn't correct
55 Correct 76 ms 4756 KB Output is correct
56 Correct 385 ms 4712 KB Output is correct
57 Incorrect 80 ms 5376 KB Output isn't correct
58 Correct 86 ms 5376 KB Output is correct
59 Correct 453 ms 5500 KB Output is correct
60 Incorrect 93 ms 6084 KB Output isn't correct
61 Correct 96 ms 6084 KB Output is correct
62 Correct 565 ms 6072 KB Output is correct
63 Correct 339 ms 6080 KB Output is correct
64 Correct 507 ms 6052 KB Output is correct
65 Correct 497 ms 6148 KB Output is correct
66 Incorrect 393 ms 6052 KB Output isn't correct
67 Correct 402 ms 6116 KB Output is correct
68 Correct 173 ms 6128 KB Output is correct
69 Correct 149 ms 6096 KB Output is correct
70 Correct 137 ms 6076 KB Output is correct
71 Correct 141 ms 6080 KB Output is correct
72 Incorrect 117 ms 6144 KB Output isn't correct
73 Incorrect 152 ms 6140 KB Output isn't correct
74 Correct 250 ms 6100 KB Output is correct
75 Correct 292 ms 6100 KB Output is correct
76 Correct 270 ms 6100 KB Output is correct
77 Correct 296 ms 6288 KB Output is correct
78 Correct 348 ms 6064 KB Output is correct
79 Correct 212 ms 6104 KB Output is correct
80 Correct 270 ms 6096 KB Output is correct
81 Correct 345 ms 6112 KB Output is correct
82 Correct 275 ms 6132 KB Output is correct
83 Correct 359 ms 6108 KB Output is correct
84 Correct 294 ms 6156 KB Output is correct
85 Correct 304 ms 6084 KB Output is correct
86 Correct 324 ms 6084 KB Output is correct
87 Correct 323 ms 6284 KB Output is correct
88 Correct 366 ms 6072 KB Output is correct
89 Correct 353 ms 6100 KB Output is correct
90 Correct 361 ms 6104 KB Output is correct
91 Correct 387 ms 6192 KB Output is correct
92 Correct 355 ms 6088 KB Output is correct