/*
ID: USACO_template
LANG: C++
PROG: https://oj.uz/problem/view/IOI17_prize
*/
#include <iostream> //cin , cout
#include <fstream> //fin, fout
#include <stdio.h> // scanf , pringf
#include <cstdio>
#include <algorithm> // sort , stuff
#include <stack> // stacks
#include <queue> // queues
#include <map>
#include <string>
#include <string.h>
#include <set>
using namespace std;
typedef pair<int, int> pii;
typedef vector<int> vi; /// adjlist without weight
typedef vector<pii> vii; /// adjlist with weight
typedef vector<pair<int,pii>> vpip; /// edge with weight
typedef long long ll;
#define mp make_pair
#define ff first
#define ss second
#define pb push_back
#define sz(x) (int)(x).size()
const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; //
const ll INF = 1e18; //
#define MAXV 200007
#define MAXE 100007
const int xdir[4] = {1,0,-1,0}, ydir[4] = {0,1,0,-1}; /// 4 directions
struct NODE {
int x, y;
int val;
int visited;
bool operator< (NODE b) const { return (x == b.x) ? (y < b.y) : (x < b.x); }
};
struct EDGE {
int from, to;
ll weight;
bool operator<(EDGE other) const { return weight < other.weight; }
};
bool debug=false;
/** since cnt(t) > cnt(t-1)^2 and cnt(1) = 1, number of prize is more than 1, 2^1, 2^2, 2^3, ...
* which means the sum of # of more expensive items is unique since the sum of all prize <t is less than cnt(t)
* make totMore = a[0] + a[1]
* then for i and j, if totMore[i] == totMore[j], then they are the same type
* we can divide and conquer to find the higher prize item (until totMore == 0)
* for each totMore, if a[0] on the left is the same the a[0] here, then there is no more expensive between those two
*/
#include "prize.h"
int ans=-1;
set<int> cnt[MAXV];
int leMore[MAXV];
bool divRcon(int l, int r) {
if(l>r) return false;
int m = (l+r)/2;
vi a = ask(m);
int totMore = a[0] + a[1];
leMore[m] = a[0];
if(totMore==0) {ans = m; return true;}
auto it = cnt[totMore].insert(m).ff;
if(it==cnt[totMore].begin()) {
if(divRcon(l,m-1)) return true;
} else if(leMore[*prev(it)] != leMore[*it]) {
if(divRcon(l, m-1)) return true;
}
if(next(it)==cnt[totMore].end()) {
if(divRcon(m+1,r)) return true;
}else if(leMore[*next(it)] != leMore[*it]) {
if(divRcon(m+1, r)) return true;
}
return false;
}
int find_best(int n) {
divRcon(0,n-1);
return ans;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
9800 KB |
Output is correct |
2 |
Correct |
5 ms |
9688 KB |
Output is correct |
3 |
Correct |
5 ms |
9672 KB |
Output is correct |
4 |
Correct |
5 ms |
9684 KB |
Output is correct |
5 |
Correct |
5 ms |
9672 KB |
Output is correct |
6 |
Correct |
5 ms |
9684 KB |
Output is correct |
7 |
Correct |
5 ms |
9672 KB |
Output is correct |
8 |
Correct |
5 ms |
9672 KB |
Output is correct |
9 |
Correct |
4 ms |
9672 KB |
Output is correct |
10 |
Correct |
5 ms |
9792 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
9688 KB |
Output is correct |
2 |
Correct |
6 ms |
9688 KB |
Output is correct |
3 |
Correct |
5 ms |
9684 KB |
Output is correct |
4 |
Correct |
5 ms |
9696 KB |
Output is correct |
5 |
Correct |
5 ms |
9672 KB |
Output is correct |
6 |
Correct |
6 ms |
9684 KB |
Output is correct |
7 |
Correct |
6 ms |
9680 KB |
Output is correct |
8 |
Correct |
7 ms |
9676 KB |
Output is correct |
9 |
Correct |
5 ms |
9684 KB |
Output is correct |
10 |
Correct |
5 ms |
9720 KB |
Output is correct |
11 |
Correct |
7 ms |
9800 KB |
Output is correct |
12 |
Correct |
5 ms |
9684 KB |
Output is correct |
13 |
Correct |
7 ms |
10100 KB |
Output is correct |
14 |
Correct |
7 ms |
9672 KB |
Output is correct |
15 |
Correct |
12 ms |
9800 KB |
Output is correct |
16 |
Correct |
35 ms |
10452 KB |
Output is correct |
17 |
Correct |
7 ms |
9672 KB |
Output is correct |
18 |
Correct |
52 ms |
10560 KB |
Output is correct |
19 |
Correct |
5 ms |
9676 KB |
Output is correct |
20 |
Correct |
15 ms |
9804 KB |
Output is correct |
21 |
Correct |
22 ms |
10044 KB |
Output is correct |
22 |
Correct |
7 ms |
9672 KB |
Output is correct |
23 |
Correct |
5 ms |
9672 KB |
Output is correct |
24 |
Correct |
6 ms |
9680 KB |
Output is correct |
25 |
Correct |
14 ms |
10192 KB |
Output is correct |
26 |
Correct |
25 ms |
10092 KB |
Output is correct |
27 |
Correct |
5 ms |
9684 KB |
Output is correct |
28 |
Correct |
21 ms |
10512 KB |
Output is correct |
29 |
Correct |
31 ms |
10380 KB |
Output is correct |
30 |
Correct |
48 ms |
10576 KB |
Output is correct |
31 |
Correct |
5 ms |
9680 KB |
Output is correct |
32 |
Correct |
8 ms |
9920 KB |
Output is correct |
33 |
Correct |
4 ms |
9672 KB |
Output is correct |
34 |
Correct |
17 ms |
9932 KB |
Output is correct |
35 |
Correct |
6 ms |
9864 KB |
Output is correct |
36 |
Correct |
15 ms |
9804 KB |
Output is correct |
37 |
Correct |
6 ms |
9672 KB |
Output is correct |
38 |
Correct |
5 ms |
9672 KB |
Output is correct |
39 |
Correct |
21 ms |
10064 KB |
Output is correct |
40 |
Correct |
44 ms |
10556 KB |
Output is correct |
41 |
Correct |
29 ms |
10176 KB |
Output is correct |
42 |
Correct |
25 ms |
10188 KB |
Output is correct |
43 |
Correct |
14 ms |
10136 KB |
Output is correct |
44 |
Correct |
23 ms |
10052 KB |
Output is correct |
45 |
Correct |
19 ms |
9860 KB |
Output is correct |
46 |
Correct |
5 ms |
9672 KB |
Output is correct |
47 |
Correct |
21 ms |
10056 KB |
Output is correct |
48 |
Correct |
44 ms |
10316 KB |
Output is correct |
49 |
Correct |
8 ms |
9672 KB |
Output is correct |
50 |
Correct |
24 ms |
10664 KB |
Output is correct |
51 |
Correct |
18 ms |
10060 KB |
Output is correct |
52 |
Correct |
5 ms |
9672 KB |
Output is correct |
53 |
Correct |
6 ms |
9804 KB |
Output is correct |
54 |
Correct |
25 ms |
10056 KB |
Output is correct |
55 |
Correct |
5 ms |
9684 KB |
Output is correct |
56 |
Correct |
44 ms |
10560 KB |
Output is correct |
57 |
Correct |
38 ms |
10364 KB |
Output is correct |
58 |
Correct |
37 ms |
10304 KB |
Output is correct |
59 |
Correct |
30 ms |
10188 KB |
Output is correct |
60 |
Correct |
31 ms |
10176 KB |
Output is correct |
61 |
Correct |
6 ms |
9792 KB |
Output is correct |
62 |
Correct |
6 ms |
9688 KB |
Output is correct |
63 |
Correct |
6 ms |
9808 KB |
Output is correct |
64 |
Correct |
6 ms |
9676 KB |
Output is correct |
65 |
Correct |
6 ms |
9680 KB |
Output is correct |
66 |
Correct |
8 ms |
9672 KB |
Output is correct |
67 |
Correct |
5 ms |
9680 KB |
Output is correct |
68 |
Correct |
5 ms |
9688 KB |
Output is correct |
69 |
Correct |
5 ms |
9684 KB |
Output is correct |
70 |
Correct |
5 ms |
9672 KB |
Output is correct |
71 |
Correct |
50 ms |
10624 KB |
Output is correct |
72 |
Correct |
9 ms |
10220 KB |
Output is correct |
73 |
Correct |
47 ms |
10604 KB |
Output is correct |
74 |
Correct |
53 ms |
10616 KB |
Output is correct |
75 |
Correct |
6 ms |
9800 KB |
Output is correct |
76 |
Correct |
39 ms |
10804 KB |
Output is correct |
77 |
Correct |
47 ms |
10568 KB |
Output is correct |
78 |
Correct |
11 ms |
10056 KB |
Output is correct |
79 |
Correct |
27 ms |
10552 KB |
Output is correct |
80 |
Correct |
40 ms |
10740 KB |
Output is correct |
81 |
Correct |
49 ms |
10544 KB |
Output is correct |
82 |
Correct |
49 ms |
10564 KB |
Output is correct |
83 |
Correct |
6 ms |
9800 KB |
Output is correct |
84 |
Correct |
40 ms |
10804 KB |
Output is correct |
85 |
Correct |
52 ms |
10552 KB |
Output is correct |
86 |
Correct |
11 ms |
10048 KB |
Output is correct |
87 |
Correct |
7 ms |
9944 KB |
Output is correct |
88 |
Correct |
9 ms |
10056 KB |
Output is correct |
89 |
Correct |
11 ms |
10056 KB |
Output is correct |
90 |
Correct |
8 ms |
9800 KB |
Output is correct |
91 |
Correct |
9 ms |
9928 KB |
Output is correct |
92 |
Correct |
5 ms |
9672 KB |
Output is correct |
93 |
Correct |
8 ms |
9928 KB |
Output is correct |
94 |
Correct |
9 ms |
10040 KB |
Output is correct |
95 |
Correct |
7 ms |
9964 KB |
Output is correct |
96 |
Correct |
6 ms |
9944 KB |
Output is correct |
97 |
Correct |
4 ms |
9672 KB |
Output is correct |