# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
475493 |
2021-09-22T17:43:30 Z |
blue |
Simurgh (IOI17_simurgh) |
C++17 |
|
971 ms |
18324 KB |
#include "simurgh.h"
#include <vector>
#include <iostream>
#include <set>
#include <algorithm>
using namespace std;
const int maxN = 500;
const int maxM = 500*499/2;
int N, M;
vector< vector<int> > edge_index(maxN, vector<int>(maxN, -1)); //index of edge in graph
vector<int> edge[maxN]; //list of edge destinations of each node in maain graph
vector<bool> edge_in_tree(maxM, 0); //is this edge index in the tree?
set<int> treeset; //set of edge indices in the basic spanning tree
vector<int> parent(maxN, -1); //parent of node in basic spanning tree
vector<int> depth(maxN, 0); //depth of node in basic spanning tree
const int unclear = -1;
const int good = 1;
const int bad = 0;
vector<bool> extra_visited(maxM, 0);
vector<int> state(maxM, unclear); //state of each edge.
void dfs(int u)
{
// cerr << "u = " << u << '\n';
for(int v: edge[u])
{
// cerr << u << " -> " << v << '\n';
if(parent[u] == v || parent[v] != -1) continue;
parent[v] = u;
depth[v] = depth[u] + 1;
edge_in_tree[ edge_index[u][v] ] = 1;
treeset.insert(edge_index[u][v]);
dfs(v);
}
}
vector<int> findtree_ans(maxM, -1);
vector<int> get_vector(set<int> S)
{
vector<int> K;
for(int s:S) K.push_back(s);
return K;
}
struct disjoint_set
{
int N;
vector<int> parent;
vector<int> subtree;
disjoint_set()
{
;
}
disjoint_set(int N_)
{
N = N_;
parent = vector<int>(N);
subtree = vector<int>(N, 1);
for(int i = 0; i < N; i++) parent[i] = i;
}
int root(int u)
{
while(parent[u] != u) u = parent[u];
return u;
}
bool connected(int u, int v)
{
return root(u) == root(v);
}
void join(int u, int v)
{
u = root(u);
v = root(v);
if(connected(u, v)) return;
if(subtree[u] < subtree[v]) swap(u, v);
parent[v] = u;
subtree[u] += subtree[v];
}
};
vector<int> find_roads(int n, vector<int> u, vector<int> v)
{
cerr << "check zero\n";
//PART ONE
N = n;
M = (int)u.size();
for(int j = 0; j < M; j++)
{
edge_index[ u[j] ][ v[j] ] = edge_index[ v[j] ][ u[j] ] = j;
edge[ u[j] ].push_back( v[j] );
edge[ v[j] ].push_back( u[j] );
}
// cerr << "check2\n";
parent[0] = 0;
dfs(0);
// cerr << "check3\n";
vector<int> Q;
for(int j = 0; j < M; j++)
if(edge_in_tree[j])
Q.push_back(j);
int basic_query = count_common_roads(Q);
Q.clear();
cerr << "check 1\n";
// cerr << "check4\n";
for(int j = 0; j < M; j++)
{
if(edge_in_tree[j]) continue;
// cerr << "check5 " << j << '\n';
vector<int> tree_path;
int U = u[j], V = v[j];
if(depth[U] > depth[V]) swap(U, V);
// cerr << depth[V] - depth[U] << '\n';
while(depth[V] != depth[U])
{
// cerr << "k = " << k << '\n';
tree_path.push_back( edge_index[ V ][ parent[V] ] );
V = parent[V];
}
// cerr << "check6 " << j << '\n';
// cerr << U << ' ' << V << ' ' << depth[U] << ' ' << depth[V] << '\n';
while(U != V)
{
tree_path.push_back( edge_index[U][ parent[U] ] );
tree_path.push_back(edge_index[V][parent[V]]);
U = parent[U];
V = parent[V];
}
for(int t: tree_path)
extra_visited[t] = 1;
// cerr << "check7 " << j << '\n';
vector<int> known;
vector<int> unknown;
int known_count = 0;
for(int t: tree_path)
{
if(state[t] != unclear)
{
known.push_back(t);
known_count++;
}
else
{
unknown.push_back(t);
}
}
// cerr << "check8 " << j << '\n';
if(known_count == (int)tree_path.size())
continue;
else if(known_count != 0)
{
treeset.insert(j);
treeset.erase(known[0]);
int this_basic = count_common_roads(get_vector(treeset));
int cycle_weight = this_basic + state[known[0]];
treeset.insert(known[0]);
for(int u: unknown)
{
treeset.erase(u);
state[u] = cycle_weight - count_common_roads(get_vector(treeset));
treeset.insert(u);
}
treeset.erase(j);
}
else if(known_count == 0)
{
vector< pair<int, int> > cycle_elements;
cycle_elements.push_back(make_pair(basic_query, j));
for(int t: tree_path)
{
treeset.erase(t);
treeset.insert(j);
findtree_ans[t] = count_common_roads(get_vector(treeset));
cycle_elements.push_back(make_pair(findtree_ans[t], t));
treeset.erase(j);
treeset.insert(t);
}
sort(cycle_elements.begin(), cycle_elements.end());
bool good_flag = 0;
for(int x = (int)cycle_elements.size() - 1; x >= 0; x--)
{
if(x < (int)cycle_elements.size() - 1 && cycle_elements[x].first != cycle_elements[x+1].first)
good_flag = 1;
if(good_flag)
state[ cycle_elements[x].second ] = good;
else
state[ cycle_elements[x].second ] = bad;
}
}
// cerr << "check9 " << j << '\n';
}
for(int e: treeset)
if(extra_visited[e] == 0)
state[e] = good;
// cerr << "tree and states: \n";
//
// for(int j = 0; j < M; j++)
// {
// if(edge_in_tree[j])
// {
// cerr << u[j] << ' ' << v[j] << ' ' << state[j] << '\n';
// }
// }
cerr << "check 2\n";
//PART TWO
set<int> potential_new_neighbors[N];
vector<int> new_neighbors_count(N, 0);
for(int U = 0; U < N; U++)
{
for(int V = 0; V < N; V++)
{
if(U == V) continue;
if(state[ edge_index[U][V] ] == unclear)
{
potential_new_neighbors[U].insert(V);
}
}
}
// cerr << "check 3\n";
//
// for(int t: treeset) cerr << t << ' ';
// cerr << '\n';
for(int U = 0; U < N; U++)
{
// cerr << "U = " << U << '\n';
vector<int> query_vector;
disjoint_set DSU(N);
for(int V = 0; V < N; V++)
{
if(U == V) continue;
if(edge_index[U][V] != -1)
{
if(state[ edge_index[U][V] ] == good)
new_neighbors_count[U]--;
DSU.join(U, V);
query_vector.push_back(edge_index[U][V]);
}
}
// cerr << "qv = ";
// for(int qv: query_vector) cerr << qv << ' ';
// cerr << '\n';
//
// for(int i = 0; i < N; i++)
// cerr << DSU.root(i) << ' ';
// cerr << '\n';
for(int t: treeset)
{
// cerr << u[t] << ' ' << v[t] << ' ' << DSU.connected(u[t], v[t]) << '\n';
if(!DSU.connected(u[t], v[t]))
{
// cerr << "joined!\n";
DSU.join(u[t], v[t]);
// cerr << u[t] << ' ' << v[t] << ' ' << DSU.connected(u[t], v[t]) << '\n';
query_vector.push_back(t);
if(state[t] == good)
new_neighbors_count[U]--;
// for(int i = 0; i < N; i++)
// cerr << DSU.root(i) << ' ';
// cerr << '\n';
}
// cerr << "\n";
}
// for(int i = 0; i < N; i++)
// cerr << DSU.root(i) << ' ';
// cerr << '\n';
new_neighbors_count[U] += count_common_roads(query_vector);
}
cerr << "check 4\n";
for(int Z = 1; Z <= N; Z++)
{
int U = -1;
for(int y = 0; y < N; y++)
{
if(new_neighbors_count[y] == 1)
{
U = y;
break;
}
}
if(U == -1) break;
vector<int> candidates;
for(int V = 0; V < N; V++)
{
if(U == V) continue;
if(edge_index[U][V] == -1) continue;
if(state[ edge_index[U][V] ] == unclear)
candidates.push_back(V);
}
int lo = 0;
int hi = (int)candidates.size() - 1;
while(lo != hi)
{
int mid = (lo+hi)/2;
int prefix_candidates = 0;
disjoint_set DSU(N);
vector<int> query_vector;
for(int i = 0; i <= mid; i++)
{
DSU.join(U, candidates[i]);
query_vector.push_back( edge_index[U][candidates[i]] );
}
for(int t: treeset)
{
if(DSU.connected(u[t], v[t])) continue;
prefix_candidates -= state[ edge_index[u[t]][v[t]] ];
DSU.join(u[t], v[t]);
query_vector.push_back(t);
}
prefix_candidates += count_common_roads(query_vector);
if(prefix_candidates >= 1) hi = mid;
else lo = mid+1;
}
for(int c: candidates)
{
if(c == candidates[lo])
{
state[ edge_index[U][c] ] = good;
new_neighbors_count[c]--;
}
else
{
state[ edge_index[U][c] ] = bad;
}
potential_new_neighbors[c].erase(U);
potential_new_neighbors[U].erase(c);
new_neighbors_count[U]--;
}
}
cerr << "check 5\n";
for(int j = 0; j < M; j++) cerr << state[j] << ' ';
cerr << '\n';
vector<int> res;
for(int j = 0; j < M; j++)
if(state[j] == good)
{
cerr << "adding " << j << '\n';
res.push_back(j);
}
return res;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
2252 KB |
correct |
2 |
Correct |
2 ms |
2252 KB |
correct |
3 |
Correct |
2 ms |
2324 KB |
correct |
4 |
Correct |
2 ms |
2252 KB |
correct |
5 |
Correct |
2 ms |
2252 KB |
correct |
6 |
Correct |
2 ms |
2252 KB |
correct |
7 |
Correct |
2 ms |
2252 KB |
correct |
8 |
Correct |
2 ms |
2252 KB |
correct |
9 |
Correct |
2 ms |
2252 KB |
correct |
10 |
Correct |
3 ms |
2252 KB |
correct |
11 |
Correct |
2 ms |
2252 KB |
correct |
12 |
Correct |
2 ms |
2252 KB |
correct |
13 |
Correct |
2 ms |
2252 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
2252 KB |
correct |
2 |
Correct |
2 ms |
2252 KB |
correct |
3 |
Correct |
2 ms |
2324 KB |
correct |
4 |
Correct |
2 ms |
2252 KB |
correct |
5 |
Correct |
2 ms |
2252 KB |
correct |
6 |
Correct |
2 ms |
2252 KB |
correct |
7 |
Correct |
2 ms |
2252 KB |
correct |
8 |
Correct |
2 ms |
2252 KB |
correct |
9 |
Correct |
2 ms |
2252 KB |
correct |
10 |
Correct |
3 ms |
2252 KB |
correct |
11 |
Correct |
2 ms |
2252 KB |
correct |
12 |
Correct |
2 ms |
2252 KB |
correct |
13 |
Correct |
2 ms |
2252 KB |
correct |
14 |
Correct |
10 ms |
2380 KB |
correct |
15 |
Correct |
8 ms |
2380 KB |
correct |
16 |
Correct |
7 ms |
2432 KB |
correct |
17 |
Correct |
7 ms |
2460 KB |
correct |
18 |
Correct |
4 ms |
2252 KB |
correct |
19 |
Correct |
7 ms |
2380 KB |
correct |
20 |
Correct |
7 ms |
2456 KB |
correct |
21 |
Correct |
7 ms |
2380 KB |
correct |
22 |
Correct |
5 ms |
2428 KB |
correct |
23 |
Correct |
5 ms |
2380 KB |
correct |
24 |
Correct |
4 ms |
2380 KB |
correct |
25 |
Correct |
3 ms |
2252 KB |
correct |
26 |
Correct |
4 ms |
2380 KB |
correct |
27 |
Correct |
5 ms |
2380 KB |
correct |
28 |
Correct |
3 ms |
2324 KB |
correct |
29 |
Correct |
3 ms |
2252 KB |
correct |
30 |
Correct |
6 ms |
2380 KB |
correct |
31 |
Correct |
5 ms |
2332 KB |
correct |
32 |
Correct |
5 ms |
2380 KB |
correct |
33 |
Correct |
5 ms |
2412 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
2252 KB |
correct |
2 |
Correct |
2 ms |
2252 KB |
correct |
3 |
Correct |
2 ms |
2324 KB |
correct |
4 |
Correct |
2 ms |
2252 KB |
correct |
5 |
Correct |
2 ms |
2252 KB |
correct |
6 |
Correct |
2 ms |
2252 KB |
correct |
7 |
Correct |
2 ms |
2252 KB |
correct |
8 |
Correct |
2 ms |
2252 KB |
correct |
9 |
Correct |
2 ms |
2252 KB |
correct |
10 |
Correct |
3 ms |
2252 KB |
correct |
11 |
Correct |
2 ms |
2252 KB |
correct |
12 |
Correct |
2 ms |
2252 KB |
correct |
13 |
Correct |
2 ms |
2252 KB |
correct |
14 |
Correct |
10 ms |
2380 KB |
correct |
15 |
Correct |
8 ms |
2380 KB |
correct |
16 |
Correct |
7 ms |
2432 KB |
correct |
17 |
Correct |
7 ms |
2460 KB |
correct |
18 |
Correct |
4 ms |
2252 KB |
correct |
19 |
Correct |
7 ms |
2380 KB |
correct |
20 |
Correct |
7 ms |
2456 KB |
correct |
21 |
Correct |
7 ms |
2380 KB |
correct |
22 |
Correct |
5 ms |
2428 KB |
correct |
23 |
Correct |
5 ms |
2380 KB |
correct |
24 |
Correct |
4 ms |
2380 KB |
correct |
25 |
Correct |
3 ms |
2252 KB |
correct |
26 |
Correct |
4 ms |
2380 KB |
correct |
27 |
Correct |
5 ms |
2380 KB |
correct |
28 |
Correct |
3 ms |
2324 KB |
correct |
29 |
Correct |
3 ms |
2252 KB |
correct |
30 |
Correct |
6 ms |
2380 KB |
correct |
31 |
Correct |
5 ms |
2332 KB |
correct |
32 |
Correct |
5 ms |
2380 KB |
correct |
33 |
Correct |
5 ms |
2412 KB |
correct |
34 |
Correct |
169 ms |
5932 KB |
correct |
35 |
Correct |
180 ms |
5856 KB |
correct |
36 |
Correct |
127 ms |
4732 KB |
correct |
37 |
Correct |
21 ms |
2464 KB |
correct |
38 |
Correct |
166 ms |
5968 KB |
correct |
39 |
Correct |
152 ms |
5360 KB |
correct |
40 |
Correct |
120 ms |
4728 KB |
correct |
41 |
Correct |
171 ms |
5980 KB |
correct |
42 |
Correct |
166 ms |
5956 KB |
correct |
43 |
Correct |
99 ms |
4320 KB |
correct |
44 |
Correct |
69 ms |
3788 KB |
correct |
45 |
Correct |
82 ms |
4132 KB |
correct |
46 |
Correct |
68 ms |
3684 KB |
correct |
47 |
Correct |
34 ms |
2944 KB |
correct |
48 |
Correct |
10 ms |
2368 KB |
correct |
49 |
Correct |
20 ms |
2500 KB |
correct |
50 |
Correct |
38 ms |
2940 KB |
correct |
51 |
Correct |
101 ms |
4112 KB |
correct |
52 |
Correct |
68 ms |
3888 KB |
correct |
53 |
Correct |
62 ms |
3700 KB |
correct |
54 |
Correct |
83 ms |
4332 KB |
correct |
55 |
Correct |
88 ms |
4112 KB |
correct |
56 |
Correct |
82 ms |
4108 KB |
correct |
57 |
Correct |
85 ms |
4120 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
2252 KB |
correct |
2 |
Correct |
2 ms |
2252 KB |
correct |
3 |
Correct |
585 ms |
12640 KB |
correct |
4 |
Correct |
920 ms |
18184 KB |
correct |
5 |
Correct |
923 ms |
18244 KB |
correct |
6 |
Correct |
925 ms |
18128 KB |
correct |
7 |
Correct |
925 ms |
18212 KB |
correct |
8 |
Correct |
908 ms |
18260 KB |
correct |
9 |
Correct |
909 ms |
18196 KB |
correct |
10 |
Correct |
953 ms |
18168 KB |
correct |
11 |
Correct |
971 ms |
18188 KB |
correct |
12 |
Correct |
957 ms |
18204 KB |
correct |
13 |
Correct |
2 ms |
2252 KB |
correct |
14 |
Correct |
967 ms |
18256 KB |
correct |
15 |
Correct |
971 ms |
18200 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
2252 KB |
correct |
2 |
Correct |
2 ms |
2252 KB |
correct |
3 |
Correct |
2 ms |
2324 KB |
correct |
4 |
Correct |
2 ms |
2252 KB |
correct |
5 |
Correct |
2 ms |
2252 KB |
correct |
6 |
Correct |
2 ms |
2252 KB |
correct |
7 |
Correct |
2 ms |
2252 KB |
correct |
8 |
Correct |
2 ms |
2252 KB |
correct |
9 |
Correct |
2 ms |
2252 KB |
correct |
10 |
Correct |
3 ms |
2252 KB |
correct |
11 |
Correct |
2 ms |
2252 KB |
correct |
12 |
Correct |
2 ms |
2252 KB |
correct |
13 |
Correct |
2 ms |
2252 KB |
correct |
14 |
Correct |
10 ms |
2380 KB |
correct |
15 |
Correct |
8 ms |
2380 KB |
correct |
16 |
Correct |
7 ms |
2432 KB |
correct |
17 |
Correct |
7 ms |
2460 KB |
correct |
18 |
Correct |
4 ms |
2252 KB |
correct |
19 |
Correct |
7 ms |
2380 KB |
correct |
20 |
Correct |
7 ms |
2456 KB |
correct |
21 |
Correct |
7 ms |
2380 KB |
correct |
22 |
Correct |
5 ms |
2428 KB |
correct |
23 |
Correct |
5 ms |
2380 KB |
correct |
24 |
Correct |
4 ms |
2380 KB |
correct |
25 |
Correct |
3 ms |
2252 KB |
correct |
26 |
Correct |
4 ms |
2380 KB |
correct |
27 |
Correct |
5 ms |
2380 KB |
correct |
28 |
Correct |
3 ms |
2324 KB |
correct |
29 |
Correct |
3 ms |
2252 KB |
correct |
30 |
Correct |
6 ms |
2380 KB |
correct |
31 |
Correct |
5 ms |
2332 KB |
correct |
32 |
Correct |
5 ms |
2380 KB |
correct |
33 |
Correct |
5 ms |
2412 KB |
correct |
34 |
Correct |
169 ms |
5932 KB |
correct |
35 |
Correct |
180 ms |
5856 KB |
correct |
36 |
Correct |
127 ms |
4732 KB |
correct |
37 |
Correct |
21 ms |
2464 KB |
correct |
38 |
Correct |
166 ms |
5968 KB |
correct |
39 |
Correct |
152 ms |
5360 KB |
correct |
40 |
Correct |
120 ms |
4728 KB |
correct |
41 |
Correct |
171 ms |
5980 KB |
correct |
42 |
Correct |
166 ms |
5956 KB |
correct |
43 |
Correct |
99 ms |
4320 KB |
correct |
44 |
Correct |
69 ms |
3788 KB |
correct |
45 |
Correct |
82 ms |
4132 KB |
correct |
46 |
Correct |
68 ms |
3684 KB |
correct |
47 |
Correct |
34 ms |
2944 KB |
correct |
48 |
Correct |
10 ms |
2368 KB |
correct |
49 |
Correct |
20 ms |
2500 KB |
correct |
50 |
Correct |
38 ms |
2940 KB |
correct |
51 |
Correct |
101 ms |
4112 KB |
correct |
52 |
Correct |
68 ms |
3888 KB |
correct |
53 |
Correct |
62 ms |
3700 KB |
correct |
54 |
Correct |
83 ms |
4332 KB |
correct |
55 |
Correct |
88 ms |
4112 KB |
correct |
56 |
Correct |
82 ms |
4108 KB |
correct |
57 |
Correct |
85 ms |
4120 KB |
correct |
58 |
Correct |
1 ms |
2252 KB |
correct |
59 |
Correct |
2 ms |
2252 KB |
correct |
60 |
Correct |
585 ms |
12640 KB |
correct |
61 |
Correct |
920 ms |
18184 KB |
correct |
62 |
Correct |
923 ms |
18244 KB |
correct |
63 |
Correct |
925 ms |
18128 KB |
correct |
64 |
Correct |
925 ms |
18212 KB |
correct |
65 |
Correct |
908 ms |
18260 KB |
correct |
66 |
Correct |
909 ms |
18196 KB |
correct |
67 |
Correct |
953 ms |
18168 KB |
correct |
68 |
Correct |
971 ms |
18188 KB |
correct |
69 |
Correct |
957 ms |
18204 KB |
correct |
70 |
Correct |
2 ms |
2252 KB |
correct |
71 |
Correct |
967 ms |
18256 KB |
correct |
72 |
Correct |
971 ms |
18200 KB |
correct |
73 |
Correct |
2 ms |
2252 KB |
correct |
74 |
Correct |
938 ms |
18280 KB |
correct |
75 |
Correct |
886 ms |
17692 KB |
correct |
76 |
Correct |
368 ms |
8000 KB |
correct |
77 |
Correct |
951 ms |
18324 KB |
correct |
78 |
Correct |
932 ms |
18224 KB |
correct |
79 |
Correct |
952 ms |
18172 KB |
correct |
80 |
Correct |
902 ms |
17756 KB |
correct |
81 |
Correct |
768 ms |
15520 KB |
correct |
82 |
Correct |
967 ms |
17740 KB |
correct |
83 |
Correct |
523 ms |
10320 KB |
correct |
84 |
Correct |
487 ms |
11852 KB |
correct |
85 |
Correct |
415 ms |
10896 KB |
correct |
86 |
Correct |
300 ms |
8316 KB |
correct |
87 |
Correct |
214 ms |
6616 KB |
correct |
88 |
Correct |
173 ms |
5444 KB |
correct |
89 |
Correct |
170 ms |
5248 KB |
correct |
90 |
Correct |
178 ms |
4836 KB |
correct |
91 |
Correct |
55 ms |
2608 KB |
correct |
92 |
Correct |
39 ms |
2432 KB |
correct |
93 |
Correct |
454 ms |
10828 KB |
correct |
94 |
Correct |
279 ms |
8132 KB |
correct |
95 |
Correct |
277 ms |
7976 KB |
correct |
96 |
Correct |
159 ms |
5020 KB |
correct |
97 |
Correct |
184 ms |
5552 KB |
correct |
98 |
Correct |
208 ms |
6504 KB |
correct |
99 |
Correct |
187 ms |
5656 KB |
correct |
100 |
Correct |
79 ms |
3008 KB |
correct |
101 |
Correct |
40 ms |
2456 KB |
correct |
102 |
Correct |
493 ms |
10360 KB |
correct |
103 |
Correct |
490 ms |
10352 KB |
correct |
104 |
Correct |
446 ms |
10248 KB |
correct |
105 |
Correct |
448 ms |
10280 KB |
correct |