Submission #469974

# Submission time Handle Problem Language Result Execution time Memory
469974 2021-09-02T13:27:01 Z Namnamseo Harvest (JOI20_harvest) C++17
100 / 100
1136 ms 176712 KB
#include <algorithm>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#define rep(i, n) for (int i=0; i<n; ++i)
#define rrep(i, n) for (int i=1; i<=n; ++i)
#define all(v) v.begin(), v.end()
#define pb push_back
using namespace std;
using ll=long long; using pp=pair<int,int>;
using vi=vector<int>; using vll=vector<ll>;
const int maxn = int(2e5) + 10;

int n;

struct MergeSortTree {
	const static int M = 262144;
	vll t[M<<1];
	void add_point(int x, ll y) { for (x+=M; x; x/=2) t[x].pb(y); }
	void init() {
		for (int i=1; i<M; ++i) sort(all(t[M+i]));
		for (int i=M-1; 1<=i; --i) {
			auto &v = t[i], &vl = t[i*2], &vr = t[i*2+1];
			if (vl.empty()) v = vr; else if (vr.empty()) v = vl;
			else v.resize(vl.size()+vr.size()), merge(all(vl), all(vr), v.begin());
		}
	}
	int rect(int l, int r, ll u) {
		int ret = 0;
		auto qv = [&](vll &v) { ret += (upper_bound(all(v), u)-v.begin()); };
		for (l+=M, r+=M; l<=r; l/=2, r/=2) {
			if (l%2==1) qv(t[l++]);
			if (r%2==0) qv(t[r--]);
		}
		return ret;
	}
	int rect(int l, int r, ll d, ll u) {
		int ret = 0;
		auto qv = [&](vll &v) { ret += (upper_bound(all(v), u)-lower_bound(all(v), d)); };
		for (l+=M, r+=M; l<=r; l/=2, r/=2) {
			if (l%2==1) qv(t[l++]);
			if (r%2==0) qv(t[r--]);
		}
		return ret;
	}
};

int nxt[maxn], nxtd[maxn];
vi apples[maxn];

namespace Step1 {
int m, L, C;
int person[maxn], apple[maxn];
void In() {
	cin.tie(0)->sync_with_stdio(0);
	cin >> n >> m >> L >> C;
	rrep(i, n) cin >> person[i];
	rrep(i, m) cin >> apple[i];
}

pp GetNxt(int pos) {
	int i = int(upper_bound(person+1, person+n+1, pos)-person)-1;
	if (i == 0) return {n, (L-person[n])+pos};
	else return {i, pos-person[i]};
}

void BuildNxt() {
	rrep(i, n) {
		int t = person[i]-C%L; if (t < 0) t += L;
		tie(nxt[i], nxtd[i]) = GetNxt(t);
		nxtd[i] += C;
	}
}

void AddApples() {
	rrep(i, m) {
		int j, d; tie(j, d) = GetNxt(apple[i]);
		apples[j].emplace_back(d);
	}
}

void Work() {
	In();
	BuildNxt(); AddApples();
}
}

int cn;
int myci[maxn];
int croots[maxn];
ll crdst[maxn];
ll clen[maxn];
vector<int> celem[maxn];
bool iscv[maxn];
int tin[maxn], tout[maxn];

namespace Step2 {
bool onstk[maxn];
void dfs1(int x) {
	onstk[x] = true;
	int y = nxt[x];
	if (!onstk[y]) {
		if (!myci[y]) dfs1(y);
		myci[x] = myci[y];
		crdst[x] = crdst[y] + nxtd[x];
		onstk[x] = false;
		return;
	}
	myci[x] = ++cn; croots[cn] = x; iscv[x] = true;
	celem[cn].pb(x);
	for (int y=nxt[x]; y!=x; y=nxt[y]) celem[cn].pb(y);
	onstk[x] = false;
}

vector<int> child[maxn];
int nt;
void dfs2(int x) {
	tin[x] = ++nt;
	for (int y:child[x]) {
		dfs2(y);
	}
	tout[x] = nt;
}

void BuildGraph() {
	rrep(i, n) if (!myci[i]) dfs1(i);
	rrep(i, n) if (celem[myci[i]][0] != i) child[nxt[i]].pb(i);
	rrep(i, cn) { int r = croots[i];
		for (int x:celem[i]) {
			iscv[x] = true;
			clen[i] += nxtd[x];
		}
		dfs2(r);
	}
}
}

MergeSortTree tconst, tinf;
vector<ll> rdl[maxn], rdp[maxn];
int xoff[maxn], xoz;
ll cp[maxn];

namespace Step3 {
void Build() {
	rrep(i, n) for (int ad:apples[i]) tconst.add_point(tin[i], crdst[i]+ad);
	tconst.init();

	rrep(v, n) for (int ad:apples[v]) rdl[myci[v]].pb(crdst[v]+ad);
	rrep(ci, cn) {
		sort(all(rdl[ci])), rdp[ci].resize(rdl[ci].size());
		xoff[ci] = xoz;
		xoz += rdl[ci].size();
	}

	rrep(v, n) for (int ad:apples[v]) {
		int ci = myci[v];
		auto &vl=rdl[ci], &vp=rdp[ci];
		ll tt = crdst[v] + ad, cl = clen[ci];
		int x = int(lower_bound(all(vl), tt)-vl.begin())+1;

		ll tn = tt/cl, tr = tt%cl;
		tn = -tn-1; tr = cl-tr;
		if (tr == cl) ++tn, tr = 0;

		tinf.add_point(xoff[ci]+x, tr);
		vp[x-1] += tn;
	}

	rrep(ci, cn) partial_sum(all(rdp[ci]), rdp[ci].begin());
	tinf.init();

	rrep(ci, cn) {
		ll pt = 0;
		for (int x:celem[ci]) cp[x]=pt, pt+=nxtd[x];
		cp[celem[ci][0]] = pt;
	}
}
}

int CountConst(int v, ll T) {
	return tconst.rect(tin[v], tout[v], crdst[v]+T);
}

ll CountInf(int v, ll T) {
	int ci = myci[v];
	ll p = cp[v], cl = clen[ci];
	ll np = (T-p)/cl, rp = (T-p)%cl;
	if (rp < 0) rp+=cl, --np;

	auto &vl = rdl[ci], &vp = rdp[ci];
	int xr = upper_bound(all(vl), T-p)-vl.begin();
	if (!xr) return 0;

	ll ret = xr * (1 + np) + (xr ? vp[xr-1] : 0);
	ret += tinf.rect(xoff[ci]+1, xoff[ci]+xr,
		cl-rp, cl);

	return ret;
}

int main() {
	Step1::Work();
	Step2::BuildGraph();
	Step3::Build();

	int q; cin >> q;
for (;q--;) {
	int v; ll T; cin >> v >> T;

	ll ans = CountConst(v, T);
	if (iscv[v]) ans += CountInf(v, T);

	cout << ans;
	cout << '\n';
}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 32 ms 48604 KB Output is correct
2 Correct 37 ms 50276 KB Output is correct
3 Correct 37 ms 50072 KB Output is correct
4 Correct 42 ms 50068 KB Output is correct
5 Correct 38 ms 50300 KB Output is correct
6 Correct 40 ms 50328 KB Output is correct
7 Correct 37 ms 50376 KB Output is correct
8 Correct 38 ms 50064 KB Output is correct
9 Correct 36 ms 50068 KB Output is correct
10 Correct 37 ms 49988 KB Output is correct
11 Correct 36 ms 50084 KB Output is correct
12 Correct 37 ms 50352 KB Output is correct
13 Correct 40 ms 50492 KB Output is correct
14 Correct 40 ms 50284 KB Output is correct
15 Correct 39 ms 50252 KB Output is correct
16 Correct 37 ms 50284 KB Output is correct
17 Correct 38 ms 50232 KB Output is correct
18 Correct 42 ms 50120 KB Output is correct
19 Correct 38 ms 50124 KB Output is correct
20 Correct 37 ms 50116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 217 ms 57216 KB Output is correct
2 Correct 253 ms 69812 KB Output is correct
3 Correct 219 ms 73728 KB Output is correct
4 Correct 287 ms 75428 KB Output is correct
5 Correct 294 ms 86392 KB Output is correct
6 Correct 269 ms 85896 KB Output is correct
7 Correct 193 ms 64772 KB Output is correct
8 Correct 198 ms 64776 KB Output is correct
9 Correct 457 ms 90912 KB Output is correct
10 Correct 316 ms 90216 KB Output is correct
11 Correct 503 ms 89736 KB Output is correct
12 Correct 483 ms 89904 KB Output is correct
13 Correct 494 ms 89692 KB Output is correct
14 Correct 351 ms 89076 KB Output is correct
15 Correct 457 ms 82924 KB Output is correct
16 Correct 285 ms 75140 KB Output is correct
17 Correct 253 ms 74480 KB Output is correct
18 Correct 170 ms 60168 KB Output is correct
19 Correct 162 ms 59208 KB Output is correct
20 Correct 208 ms 68776 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 32 ms 48604 KB Output is correct
2 Correct 37 ms 50276 KB Output is correct
3 Correct 37 ms 50072 KB Output is correct
4 Correct 42 ms 50068 KB Output is correct
5 Correct 38 ms 50300 KB Output is correct
6 Correct 40 ms 50328 KB Output is correct
7 Correct 37 ms 50376 KB Output is correct
8 Correct 38 ms 50064 KB Output is correct
9 Correct 36 ms 50068 KB Output is correct
10 Correct 37 ms 49988 KB Output is correct
11 Correct 36 ms 50084 KB Output is correct
12 Correct 37 ms 50352 KB Output is correct
13 Correct 40 ms 50492 KB Output is correct
14 Correct 40 ms 50284 KB Output is correct
15 Correct 39 ms 50252 KB Output is correct
16 Correct 37 ms 50284 KB Output is correct
17 Correct 38 ms 50232 KB Output is correct
18 Correct 42 ms 50120 KB Output is correct
19 Correct 38 ms 50124 KB Output is correct
20 Correct 37 ms 50116 KB Output is correct
21 Correct 217 ms 57216 KB Output is correct
22 Correct 253 ms 69812 KB Output is correct
23 Correct 219 ms 73728 KB Output is correct
24 Correct 287 ms 75428 KB Output is correct
25 Correct 294 ms 86392 KB Output is correct
26 Correct 269 ms 85896 KB Output is correct
27 Correct 193 ms 64772 KB Output is correct
28 Correct 198 ms 64776 KB Output is correct
29 Correct 457 ms 90912 KB Output is correct
30 Correct 316 ms 90216 KB Output is correct
31 Correct 503 ms 89736 KB Output is correct
32 Correct 483 ms 89904 KB Output is correct
33 Correct 494 ms 89692 KB Output is correct
34 Correct 351 ms 89076 KB Output is correct
35 Correct 457 ms 82924 KB Output is correct
36 Correct 285 ms 75140 KB Output is correct
37 Correct 253 ms 74480 KB Output is correct
38 Correct 170 ms 60168 KB Output is correct
39 Correct 162 ms 59208 KB Output is correct
40 Correct 208 ms 68776 KB Output is correct
41 Correct 681 ms 154948 KB Output is correct
42 Correct 552 ms 161528 KB Output is correct
43 Correct 172 ms 72132 KB Output is correct
44 Correct 425 ms 146516 KB Output is correct
45 Correct 697 ms 171792 KB Output is correct
46 Correct 720 ms 168344 KB Output is correct
47 Correct 841 ms 168232 KB Output is correct
48 Correct 541 ms 159720 KB Output is correct
49 Correct 497 ms 163836 KB Output is correct
50 Correct 526 ms 152172 KB Output is correct
51 Correct 505 ms 150740 KB Output is correct
52 Correct 1091 ms 176672 KB Output is correct
53 Correct 976 ms 176712 KB Output is correct
54 Correct 1109 ms 176224 KB Output is correct
55 Correct 1136 ms 175436 KB Output is correct
56 Correct 758 ms 164308 KB Output is correct
57 Correct 718 ms 161660 KB Output is correct
58 Correct 779 ms 166516 KB Output is correct
59 Correct 494 ms 150808 KB Output is correct
60 Correct 534 ms 154220 KB Output is correct
61 Correct 490 ms 154008 KB Output is correct
62 Correct 1014 ms 170856 KB Output is correct
63 Correct 451 ms 137980 KB Output is correct
64 Correct 447 ms 138212 KB Output is correct
65 Correct 471 ms 139012 KB Output is correct
66 Correct 367 ms 132408 KB Output is correct
67 Correct 370 ms 131692 KB Output is correct
68 Correct 397 ms 130784 KB Output is correct
69 Correct 676 ms 156632 KB Output is correct
70 Correct 631 ms 153224 KB Output is correct
71 Correct 642 ms 154292 KB Output is correct
72 Correct 593 ms 154504 KB Output is correct