Submission #467743

# Submission time Handle Problem Language Result Execution time Memory
467743 2021-08-24T09:45:56 Z pure_mem Dragon 2 (JOI17_dragon2) C++14
60 / 100
4000 ms 21692 KB
#include <bits/stdc++.h>
 
#define X first
#define Y second
#define MP make_pair
#define ll long long
 
using namespace std;
 
const int maxN = 7e4 + 12;
const int maxQ = 1e5 + 12;
const int block = 300, INF = 1e9 + 7;
 
typedef pair<ll, ll> Point;
Point origin;
 
struct Fenwick {
	int f[maxN], was[maxN], timer = 0;
	void clear() {
		timer++;
	}
	void upd(int v, int val) {
		assert(v < maxN);
		for(;v < maxN;v |= v + 1) {
			if(was[v] != timer)
				f[v] = 0, was[v] = timer;
			f[v] += val;
	    }
	}
	int get(int v) {
		int res = 0;
		for(;v >= 0;v = (v & (v + 1)) - 1) {
			if(was[v] != timer)
				f[v] = 0, was[v] = timer;
			res += f[v];
		}
		return res;
	}
	int get(int l, int r) {
		if(l > r) {
			return get(maxN - 1) - get(l - 1) + get(r);
		} 
		else {
		    return get(r) - get(l - 1);
		}
	}
} BIT;
 
struct node {
	int s = 0;
	node *l = nullptr, *r = nullptr;	
};
int tree_ptr;
node* tree[maxN];
 
node* upd(node* v, int tl, int tr, int pos, int val) {
	if(tl == tr) 
		return new node {(v ? v->s: 0) + val, nullptr, nullptr};
	int tm = (tl + tr) / 2;
	if(pos <= tm) {	
		return new node {(v ? v->s: 0) + val, upd(v ? v->l: v, tl, tm, pos, val), v ? v->r: v};
	}
	else {
		return new node {(v ? v->s: 0) + val, v ? v->l: v, upd(v ? v->r: v, tm + 1, tr, pos, val)};
	}
}
int get(node* v, int tl, int tr, int l, int r){
	if(!v || tl > r || l > tr)
		return 0;
	if(tl >= l && tr <= r)
		return v->s;
	int tm = (tl + tr) / 2;
	return get(v->l, tl, tm, l, r) + get(v->r, tm + 1, tr, l, r);
}
 
int sign(ll value) {
	if(value > 0) return 1;
	if(value < 0) return -1;
	return 0;
}
 
int half(Point a, Point b) {
	if(a.X != b.X) 
		return a.X < b.X ? 1: -1;
	return a.Y < b.Y ? 1: -1;
}
 
ll cross(Point a, Point b, Point c) {
	a.X -= c.X, b.X -= c.X;
	a.Y -= c.Y, b.Y -= c.Y;
	return a.X * b.Y - a.Y * b.X;
}
 
struct Event {
	int clr, id;
	Point pos;
};
 
bool operator < (const Event &lhs, const Event &rhs) {
	int lhs_h = half(lhs.pos, origin);
	int rhs_h = half(rhs.pos, origin);
	if(lhs_h != rhs_h)
		return lhs_h < rhs_h;
	return cross(lhs.pos, rhs.pos, origin) < 0;
}
 
int n, m, q, tValue[maxN], txValue[maxN];
ll answer[maxQ];
pair< Point, Point > city;
pair< int, int > border[maxN], xBorder[maxN];
vector< pair<int, int> > rQuery[maxN], Query[maxN];
vector< int > gDragon[maxN];
Event dragon[maxN];
 
// border - y, area - x
 
void inputs() {
	memset(answer, -1, sizeof(answer));
	cin >> n >> m;
	for(int i = 1, x, y, clr;i <= n;i++){
		cin >> x >> y >> clr;
	//	x += INF, y += INF;
		dragon[i] = {clr, i, {x, y}};
		dragon[i + n] = {-clr, i, {-x, -y}};		
	}
	cin >> city.X.X >> city.X.Y >> city.Y.X >> city.Y.Y;
	cin >> q;
	for(int i = 1, u, v;i <= q;i++){
		cin >> u >> v;
		Query[u].push_back({v, i});
		rQuery[v].push_back({u, i});
	}
}
 
void normalize() {
	for(int i = 1;i <= n + n;i++) {
		if(dragon[i].clr > 0) {
			dragon[i].pos.X -= origin.X;	
			dragon[i].pos.Y -= origin.Y;
		}	
		else {
		    dragon[i].pos.X += origin.X;	
			dragon[i].pos.Y += origin.Y;
		}
	}
	city.X.X -= origin.X, city.Y.X -= origin.X;
	city.X.Y -= origin.Y, city.Y.Y -= origin.Y;
}
void d_normalize() {
	for(int i = 1;i <= n + n;i++) {
		if(dragon[i].clr > 0) {
			dragon[i].pos.X += origin.X;	
			dragon[i].pos.Y += origin.Y;
		}	
		else {
		    dragon[i].pos.X -= origin.X;	
			dragon[i].pos.Y -= origin.Y;
		}
	}
	city.X.X += origin.X, city.Y.X += origin.X;
	city.X.Y += origin.Y, city.Y.Y += origin.Y;
}
 
void prepare() {
	origin = city.Y;
	auto mem = origin;
	normalize(), origin = MP(0, 0);
	sort(dragon + 1, dragon + n + n + 1);
	for(int i = 1, id;i <= n + n;i++){
		id = dragon[i].id;
		if(dragon[i].clr > 0)
			tValue[id] = i, txValue[i] = id;
		if(border[id].X == 0)	
			border[id].X = i;
		else
			border[id].Y = i;	
	}
	for(int i = 1;i <= n;i++) {
		Event cur = dragon[border[i].X];
		Event rev = dragon[border[i].Y];
		if(cross(cur.pos, rev.pos, city.X) < 0)	
			swap(border[i].X, border[i].Y);
		//cerr << i << ": " << border[i].X << " " << border[i].Y << "\n";
	}
	origin = mem;
	d_normalize();
	
	origin = city.X, mem = origin;
	normalize(), origin = MP(0, 0);
	sort(dragon + 1, dragon + n + n + 1);
	for(int i = 1, id;i <= n + n;i++) {
		gDragon[abs(dragon[i].clr)].push_back(i);
		id = dragon[i].id;
		if(xBorder[id].X == 0)
			xBorder[id].X = i;
		else
			xBorder[id].Y = i;	
	}   /*
	for(int i = 1;i <= n + n;i++) {
		int val = 0;
		if(dragon[i].clr < 0) continue;
		cerr << dragon[i].id << " " << i << "\n";
	}   */
	for(int i = 1;i <= n;i++) {
		const Event& cur = dragon[xBorder[i].X];
		const Event& rev = dragon[xBorder[i].Y];
		if(cross(cur.pos, rev.pos, city.Y) < 0)	
			swap(xBorder[i].X, xBorder[i].Y);
		//cerr << i << ": " << xBorder[i].X << " " << xBorder[i].Y << "\n";
	}
 
 
}
 
void add_interval(pair<int, int> v, int val) {
	if(v.X <= v.Y) {
		BIT.upd(v.X, val);
		BIT.upd(v.Y + 1, -val);
	}
	else {
		BIT.upd(v.X, val);
		BIT.upd(1, val);
		BIT.upd(v.Y + 1, -val);
	}
}
 
ll tAnswer[maxN];
int tDragon[maxN], act[maxN];
void solveHeavy(int atk) {
	BIT.clear();
	int len = gDragon[atk].size();
	for(int i = 1;i <= len;i++)
		tDragon[i] = gDragon[atk][i - 1];
	for(pair<int, int> v: Query[atk]) {
		if(answer[v.Y] != -1) 
			continue;
		for(int i = 0;i < gDragon[v.X].size();i++)
			tDragon[++len] = gDragon[v.X][i];
	}
	sort(tDragon + 1, tDragon + len + 1);

	for(int it = 0;it < 2;it++){
    	for(int i = 1;i <= len;i++) {
    		const Event& cur = dragon[tDragon[i]];
    		if(cur.clr < 0 && cur.clr != -atk)
    			continue;	
    		if(abs(cur.clr) != atk) {
    			if(it == 1)
    				tAnswer[cur.clr] += BIT.get(tValue[cur.id]);
    			//cerr << tAnswer[cur.clr] << "\n";
    		//	if(cur.clr == 9 && it == 1)
    		//		cerr << BIT.get(tValue[cur.id]) << "\n";
    		}
    		else if(tDragon[i] == xBorder[cur.id].X) {
  				if(!act[cur.id]) { 
  					act[cur.id] = 1;
  					add_interval(border[cur.id], 1);
    			}	
    		}
    		else {
   				if(act[cur.id]) {
   					act[cur.id] = 0;
   					add_interval(border[cur.id], -1);
   				}
   			}	
    	}
	}
	for(pair<int, int> v: Query[atk]) {
		if(answer[v.Y] != -1) 
			continue;
		answer[v.Y] = tAnswer[v.X];	
	}
	for(int i = 1;i <= len;i++) {
		const Event& cur = dragon[tDragon[i]];
   		act[cur.id] = 0;	
   		tAnswer[abs(cur.clr)] = 0;	
   	}
}
 
int get(int x, int l, int r){
	if(l <= r)
		return get(tree[x], 1, n + n, l, r);
	//cerr << get(tree[x], 1, n + n, l, n + n) << " " << get(tree[x], 1, n + n, 1, r) << " = ";
	return get(tree[x], 1, n + n, l, n + n) + get(tree[x], 1, n + n, 1, r);		
}
 
int get(int xl, int xr, int l, int r) {
//	cerr << xl << " " << xr << " " << l << " " << r << "\n";
	if(xl <= xr)
		return get(xr, l, r) - get(xl - 1, l, r);
	//cerr << "1: " << get(n + n, l, r) << "\n2: " << get(xr - 1, l, r) << "\n3: " << get(xl, l, r) << "\n";
	return get(n + n, l, r) - get(xl - 1, l, r) + get(xr, l, r); 
}
 
void solveHeavyR(int atk) {
	//return; // DEGB
	for(int i = 1;i <= n + n;i++) {
		tree[i] = tree[i - 1];
		int id = dragon[i].id;
		if(dragon[i].clr == atk) {
		//	cerr << i << " " << tValue[id] << "\n";
			tree[i] = upd(tree[i], 1, n + n, tValue[id], 1);
		}	
	}
	for(pair<int, int> v: rQuery[atk]) {
		if(answer[v.Y] != -1)
			continue;
		answer[v.Y] = 0;
		for(int i: gDragon[v.X]) {
			if(dragon[i].clr < 0) continue;
			int id = dragon[i].id;
			int add = get(xBorder[id].X, xBorder[id].Y, border[id].X, border[id].Y);	
			
			answer[v.Y] += add;		
		}
	//	cerr << "was\n";
	} 		
}
 
ll solveLight(int atk, int def) {		
	int lens = gDragon[atk].size() + gDragon[def].size();
	ll res = 0;
	merge(gDragon[atk].begin(), gDragon[atk].end(),
		  gDragon[def].begin(), gDragon[def].end(), tDragon + 1);
	BIT.clear();
	for(int it = 0;it < 2;it++){
    	for(int i = 1;i <= lens;i++) {
    		const Event& cur = dragon[tDragon[i]];
    		if(-cur.clr == def)
    			continue;	
    		if(cur.clr == def) {
    			if(it == 1)
    				res += BIT.get(tValue[cur.id]);
    		//	if(it == 1 && cur.clr == 9)
    		//		cerr << BIT.get(tValue[cur.id]) << "s\n";
    		//	cerr << cur.id << " " << tValue[cur.id] << "gg\n";
    		}
    		else if(tDragon[i] == xBorder[cur.id].X) {
  				if(!act[cur.id]) { 
  					act[cur.id] = 1;
  			//		cerr << cur.id << " " << border[cur.id].X << " " << border[cur.id].Y << "was+\n";
  					add_interval(border[cur.id], 1);
    			}	
    		}
    		else {
   				if(act[cur.id]) {
   					act[cur.id] = 0;
   			//		cerr << cur.id << " " << border[cur.id].X << " " << border[cur.id].Y << "was-\n";
   					add_interval(border[cur.id], -1);
   				}
   			}	
    	}
	}
	for(int i = 1;i <= lens;i++) {
    	const Event& cur = dragon[tDragon[i]];
    	act[cur.id] = 0;
    }
    return res;
}
 
int main () {
	ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	inputs();
	prepare();

	vector<int> ord(m);
	for(int i = 0;i < m;i++)
		ord[i] = i + 1;
	sort(ord.begin(), ord.end(), [](int lhs, int rhs){return gDragon[lhs].size() > gDragon[rhs].size();});
	for(int i: ord) {
		if(rQuery[i].size() >= block)
			solveHeavy(i), solveHeavyR(i);
	}
	for(int i = 1;i <= m;i++) {
		for(pair<int, int> v: Query[i]) {
			if(answer[v.Y] != -1) 
				continue;
			answer[v.Y] = solveLight(i, v.X);
		}
	} 
	for(int i = 1;i <= q;i++)
		cout << answer[i] << "\n";
}

Compilation message

dragon2.cpp: In function 'void solveHeavy(int)':
dragon2.cpp:237:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  237 |   for(int i = 0;i < gDragon[v.X].size();i++)
      |                 ~~^~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 7 ms 7884 KB Output is correct
2 Correct 14 ms 7884 KB Output is correct
3 Correct 93 ms 8068 KB Output is correct
4 Correct 165 ms 10284 KB Output is correct
5 Correct 74 ms 10900 KB Output is correct
6 Correct 8 ms 8012 KB Output is correct
7 Correct 8 ms 8084 KB Output is correct
8 Correct 7 ms 7884 KB Output is correct
9 Correct 7 ms 7884 KB Output is correct
10 Correct 7 ms 7884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 43 ms 9576 KB Output is correct
2 Correct 119 ms 9540 KB Output is correct
3 Correct 61 ms 9620 KB Output is correct
4 Correct 38 ms 9488 KB Output is correct
5 Correct 42 ms 9832 KB Output is correct
6 Correct 36 ms 9620 KB Output is correct
7 Correct 32 ms 9484 KB Output is correct
8 Correct 40 ms 9388 KB Output is correct
9 Correct 36 ms 9560 KB Output is correct
10 Correct 37 ms 9484 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 7884 KB Output is correct
2 Correct 14 ms 7884 KB Output is correct
3 Correct 93 ms 8068 KB Output is correct
4 Correct 165 ms 10284 KB Output is correct
5 Correct 74 ms 10900 KB Output is correct
6 Correct 8 ms 8012 KB Output is correct
7 Correct 8 ms 8084 KB Output is correct
8 Correct 7 ms 7884 KB Output is correct
9 Correct 7 ms 7884 KB Output is correct
10 Correct 7 ms 7884 KB Output is correct
11 Correct 43 ms 9576 KB Output is correct
12 Correct 119 ms 9540 KB Output is correct
13 Correct 61 ms 9620 KB Output is correct
14 Correct 38 ms 9488 KB Output is correct
15 Correct 42 ms 9832 KB Output is correct
16 Correct 36 ms 9620 KB Output is correct
17 Correct 32 ms 9484 KB Output is correct
18 Correct 40 ms 9388 KB Output is correct
19 Correct 36 ms 9560 KB Output is correct
20 Correct 37 ms 9484 KB Output is correct
21 Correct 52 ms 9668 KB Output is correct
22 Correct 121 ms 9556 KB Output is correct
23 Correct 1123 ms 9720 KB Output is correct
24 Correct 1964 ms 12024 KB Output is correct
25 Correct 261 ms 12352 KB Output is correct
26 Correct 153 ms 13068 KB Output is correct
27 Correct 43 ms 10956 KB Output is correct
28 Correct 47 ms 11012 KB Output is correct
29 Correct 146 ms 21692 KB Output is correct
30 Correct 1279 ms 12696 KB Output is correct
31 Correct 126 ms 12996 KB Output is correct
32 Correct 126 ms 13760 KB Output is correct
33 Correct 2155 ms 12840 KB Output is correct
34 Correct 135 ms 12996 KB Output is correct
35 Correct 141 ms 13800 KB Output is correct
36 Correct 135 ms 12832 KB Output is correct
37 Correct 150 ms 13068 KB Output is correct
38 Correct 526 ms 21656 KB Output is correct
39 Correct 1733 ms 16780 KB Output is correct
40 Correct 2195 ms 12864 KB Output is correct
41 Correct 144 ms 21572 KB Output is correct
42 Correct 181 ms 21640 KB Output is correct
43 Correct 191 ms 21572 KB Output is correct
44 Execution timed out 4091 ms 10316 KB Time limit exceeded
45 Halted 0 ms 0 KB -