#include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmin(T& _old, T _new) { return _old > _new && (_old = _new, true); }
template <class T>
bool chmax(T& _old, T _new) { return _old < _new && (_old = _new, true); }
/* basics */
namespace geo {
#define EPS 1e-8
template <typename T, enable_if_t<is_integral<T>::value, bool> = true>
int sign(T x) { return (x > 0) - (x < 0); }
template <typename T, enable_if_t<is_floating_point<T>::value, bool> = true>
int sign(T x) { return (x > EPS) - (x < -EPS); }
}; // namespace geo
/* point2D */
namespace geo {
template <typename T>
struct point2D {
T x, y;
point2D() = default;
point2D(T _x, T _y) : x(_x), y(_y) {}
template <typename U>
explicit point2D(const point2D<U>& p) : x(p.x), y(p.y) {}
using P = point2D;
bool operator<(const P& p) const { return tie(x, y) < tie(p.x, p.y); }
bool operator==(const P& p) const { return tie(x, y) == tie(p.x, p.y); }
bool operator!=(const P& p) const { return tie(x, y) != tie(p.x, p.y); }
friend P operator+(const P& a, const P& b) { return P(a.x + b.x, a.y + b.y); }
friend P operator-(const P& a, const P& b) { return P(a.x - b.x, a.y - b.y); }
friend P operator*(const P& a, const T& scalar) { return P(a.x * scalar, a.y * scalar); }
friend P operator*(const T& scalar, const P& a) { return P(scalar * a.x, scalar * a.y); }
friend P operator/(const P& a, const T& scalar) { return P(a.x / scalar, a.y / scalar); }
friend ostream& operator<<(ostream& o, const P& p) { return o << '(' << p.x << ", " << p.y << ')'; }
friend istream& operator>>(istream& i, P& p) { return i >> p.x >> p.y; }
T dot(const P& p) const { return x * p.x + y * p.y; }
T cross(const P& p) const { return x * p.y - y * p.x; }
T cross(const P& a, const P& b) const { return (a - *this).cross(b - *this); }
T dist2() const { return x * x + y * y; }
double dist() const { return sqrt(dist2()); }
P perp_cw() const { return P(y, -x); }
P perp_ccw() const { return P(-y, x); }
P unit() const { return *this / dist(); }
P normal() const { return perp_ccw().unit(); }
P unit_int() const { return x || y ? *this / gcd(x, y) : *this; }
P normal_int() const { return perp_ccw().unit_int(); }
bool same_dir(const P& p) const { return cross(p) == 0 && dot(p) > 0; }
int side_of(const P& s, const P& e) const {
if constexpr (is_integral_v<T>) {
return sign(s.cross(e, *this));
} else {
auto res = (e - s).cross(*this - s);
double l = (e - s).dist() * EPS;
return (res > l) - (res < -l);
}
}
double angle() const { return atan2(y, x); }
P rotate(double radian) const {
return P(x * cos(radian) - y * sin(radian), x * sin(radian) + y * cos(radian));
}
};
}; // namespace geo
/**
* @link https://codeforces.com/blog/entry/48868
* @return points of the hull in ccw order
* @warning points on the edge of the hull will be ignored
*/
namespace geo {
template <typename T>
vector<point2D<T>> convex_hull(vector<point2D<T>> pts) {
if (pts.size() <= 1) return pts;
sort(pts.begin(), pts.end());
vector<point2D<T>> hull(pts.size() + 1);
int s = 0, t = 0;
for (int it = 2; it--; s = --t, reverse(pts.begin(), pts.end()))
for (const auto& p : pts) {
while (t >= s + 2 && hull[t - 2].cross(hull[t - 1], p) <= 0) t--;
hull[t++] = p;
}
return {hull.begin(), hull.begin() + t - (t == 2 && hull[0] == hull[1])};
}
}; // namespace geo
namespace geo::distance2 {
template <typename T>
T hull_diameter(const vector<point2D<T>>& hull) {
T diameter = 0;
int n = hull.size();
for (int i = 0, j = n > 1; i < j; ++i) {
for (;; j = j == n - 1 ? 0 : j + 1) {
chmax(diameter, (hull[i] - hull[j]).dist2());
if ((hull[(j + 1) % n] - hull[j]).cross(hull[i + 1] - hull[i]) >= 0)
break;
}
}
return diameter;
}
}; // namespace geo::distance2
struct star_t {
int x, y, dx, dy;
};
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
#ifdef palilo
freopen("in", "r", stdin);
freopen("out", "w", stdout);
#endif
int n, t;
cin >> n >> t;
vector<star_t> a(n);
for (auto& [x, y, dx, dy] : a) {
cin >> x >> y >> dx >> dy;
}
using point = geo::point2D<int64_t>;
vector<point> star(n), hull(n + 1);
auto f = [&](int dt) -> int64_t {
transform(a.begin(), a.end(), star.begin(), [&](const auto& star) {
return point(star.x + star.dx * dt, star.y + star.dy * dt);
});
sort(star.begin(), star.end());
hull.clear();
size_t st = 0;
for (const auto& p : star) {
while (hull.size() >= st + 2 && hull.end()[-2].cross(hull.end()[-1], p) <= 0) {
hull.pop_back();
}
hull.emplace_back(p);
}
hull.pop_back();
reverse(star.begin(), star.end());
st = hull.size();
for (const auto& p : star) {
while (hull.size() >= st + 2 && hull.end()[-2].cross(hull.end()[-1], p) <= 0) {
hull.pop_back();
}
hull.emplace_back(p);
}
if (hull.size() == 2 && hull[0] == hull[1]) return 0;
return geo::distance2::hull_diameter(hull);
// int64_t ret = 0;
// for (size_t i = 0, j = 1, j2; i < j; ++i) {
// for (;; j = j2) {
// j2 = j == n - 1 ? 0 : j + 1;
// chmax(ret, (hull[i] - hull[j]).dist2());
// if ((hull[j2] - hull[j]).cross(hull[i + 1] - hull[i]) >= 0) {
// break;
// }
// }
// }
// return ret;
};
int lo = 0, hi = t;
while (lo != hi) {
const auto ml = lo + (hi - lo) / 3;
const auto mr = hi - (hi - lo) / 3;
f(ml) <= f(mr) ? hi = mr - 1 : lo = ml + 1;
}
cout << lo << '\n';
cout << f(lo);
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
204 KB |
Output is correct |
2 |
Correct |
0 ms |
204 KB |
Output is correct |
3 |
Correct |
0 ms |
204 KB |
Output is correct |
4 |
Correct |
0 ms |
204 KB |
Output is correct |
5 |
Correct |
0 ms |
204 KB |
Output is correct |
6 |
Correct |
0 ms |
204 KB |
Output is correct |
7 |
Correct |
0 ms |
204 KB |
Output is correct |
8 |
Correct |
0 ms |
204 KB |
Output is correct |
9 |
Correct |
0 ms |
204 KB |
Output is correct |
10 |
Correct |
0 ms |
204 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
204 KB |
Output is correct |
2 |
Correct |
0 ms |
204 KB |
Output is correct |
3 |
Correct |
0 ms |
204 KB |
Output is correct |
4 |
Correct |
0 ms |
204 KB |
Output is correct |
5 |
Correct |
0 ms |
204 KB |
Output is correct |
6 |
Correct |
0 ms |
204 KB |
Output is correct |
7 |
Correct |
0 ms |
204 KB |
Output is correct |
8 |
Correct |
0 ms |
204 KB |
Output is correct |
9 |
Correct |
0 ms |
204 KB |
Output is correct |
10 |
Correct |
0 ms |
204 KB |
Output is correct |
11 |
Correct |
6 ms |
332 KB |
Output is correct |
12 |
Correct |
6 ms |
332 KB |
Output is correct |
13 |
Correct |
5 ms |
332 KB |
Output is correct |
14 |
Correct |
7 ms |
332 KB |
Output is correct |
15 |
Correct |
5 ms |
332 KB |
Output is correct |
16 |
Correct |
6 ms |
332 KB |
Output is correct |
17 |
Correct |
3 ms |
328 KB |
Output is correct |
18 |
Correct |
3 ms |
332 KB |
Output is correct |
19 |
Correct |
5 ms |
388 KB |
Output is correct |
20 |
Correct |
7 ms |
332 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
58 ms |
1692 KB |
Output is correct |
2 |
Correct |
53 ms |
1740 KB |
Output is correct |
3 |
Correct |
55 ms |
1612 KB |
Output is correct |
4 |
Correct |
61 ms |
1704 KB |
Output is correct |
5 |
Correct |
48 ms |
1740 KB |
Output is correct |
6 |
Correct |
54 ms |
1724 KB |
Output is correct |
7 |
Correct |
23 ms |
1744 KB |
Output is correct |
8 |
Correct |
23 ms |
1740 KB |
Output is correct |
9 |
Correct |
52 ms |
1692 KB |
Output is correct |
10 |
Correct |
52 ms |
1736 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
204 KB |
Output is correct |
2 |
Correct |
0 ms |
204 KB |
Output is correct |
3 |
Correct |
0 ms |
204 KB |
Output is correct |
4 |
Correct |
0 ms |
204 KB |
Output is correct |
5 |
Correct |
0 ms |
204 KB |
Output is correct |
6 |
Correct |
0 ms |
204 KB |
Output is correct |
7 |
Correct |
0 ms |
204 KB |
Output is correct |
8 |
Correct |
0 ms |
204 KB |
Output is correct |
9 |
Correct |
0 ms |
204 KB |
Output is correct |
10 |
Correct |
0 ms |
204 KB |
Output is correct |
11 |
Correct |
6 ms |
332 KB |
Output is correct |
12 |
Correct |
6 ms |
332 KB |
Output is correct |
13 |
Correct |
5 ms |
332 KB |
Output is correct |
14 |
Correct |
7 ms |
332 KB |
Output is correct |
15 |
Correct |
5 ms |
332 KB |
Output is correct |
16 |
Correct |
6 ms |
332 KB |
Output is correct |
17 |
Correct |
3 ms |
328 KB |
Output is correct |
18 |
Correct |
3 ms |
332 KB |
Output is correct |
19 |
Correct |
5 ms |
388 KB |
Output is correct |
20 |
Correct |
7 ms |
332 KB |
Output is correct |
21 |
Correct |
58 ms |
1692 KB |
Output is correct |
22 |
Correct |
53 ms |
1740 KB |
Output is correct |
23 |
Correct |
55 ms |
1612 KB |
Output is correct |
24 |
Correct |
61 ms |
1704 KB |
Output is correct |
25 |
Correct |
48 ms |
1740 KB |
Output is correct |
26 |
Correct |
54 ms |
1724 KB |
Output is correct |
27 |
Correct |
23 ms |
1744 KB |
Output is correct |
28 |
Correct |
23 ms |
1740 KB |
Output is correct |
29 |
Correct |
52 ms |
1692 KB |
Output is correct |
30 |
Correct |
52 ms |
1736 KB |
Output is correct |
31 |
Correct |
263 ms |
2408 KB |
Output is correct |
32 |
Correct |
257 ms |
2260 KB |
Output is correct |
33 |
Correct |
247 ms |
2256 KB |
Output is correct |
34 |
Correct |
267 ms |
2380 KB |
Output is correct |
35 |
Correct |
208 ms |
2380 KB |
Output is correct |
36 |
Correct |
296 ms |
2252 KB |
Output is correct |
37 |
Correct |
96 ms |
2500 KB |
Output is correct |
38 |
Correct |
102 ms |
2440 KB |
Output is correct |
39 |
Correct |
179 ms |
2316 KB |
Output is correct |
40 |
Correct |
252 ms |
2252 KB |
Output is correct |
41 |
Correct |
263 ms |
2356 KB |
Output is correct |
42 |
Correct |
241 ms |
2324 KB |
Output is correct |