제출 #463704

#제출 시각아이디문제언어결과실행 시간메모리
463704mshandilya꿈 (IOI13_dreaming)C++14
100 / 100
155 ms18692 KiB
#include "bits/stdc++.h" #include "dreaming.h" #define adj_list vector<list<pair<int, int>>> #define vi vector<int> using namespace std; int nodes; adj_list adj; vi max_sub_dist, final_dist, trees; void dfs1(int root) { max_sub_dist[root] = 0; for(auto& i : adj[root]) { if(max_sub_dist[i.first]==-1) { dfs1(i.first); max_sub_dist[root] = max(max_sub_dist[root], max_sub_dist[i.first] + i.second); } } } int dfs2(int root) { pair<int, int> maxi = make_pair(nodes, 0), smaxi = make_pair(nodes, 0); for(auto& i : adj[root]) { if(max_sub_dist[i.first]+i.second > max_sub_dist[maxi.first] + maxi.second) { smaxi = maxi; maxi = i; } else if(max_sub_dist[i.first]+i.second > max_sub_dist[smaxi.first] + smaxi.second) { smaxi = i; } } if(max_sub_dist[smaxi.first] + smaxi.second >= max_sub_dist[maxi.first]) return root; max_sub_dist[maxi.first] = max(max_sub_dist[maxi.first], max_sub_dist[smaxi.first] + smaxi.second + maxi.second); max_sub_dist[root] = max_sub_dist[smaxi.first] + smaxi.second; return dfs2(maxi.first); } int diameter_dfs(int root, int state = 0) { int maxi = root, node; final_dist[root] = 0; for(auto& i : adj[root]) { if(final_dist[i.first]==-1) { node = diameter_dfs(i.first, 1); if(i.second + final_dist[i.first] > final_dist[root]) { maxi = node; final_dist[root] = i.second + final_dist[i.first]; } } } if(state) return maxi; final_dist.assign(nodes, -1); diameter_dfs(maxi, 1); return maxi; } int travelTime(int N, int M, int L, int A[], int B[], int T[]) { nodes = N; ///constructing adjacency list --> O(N+M) ~ O(2N) adj.assign(N, list<pair<int, int>> ()); for(int i = 0; i<M; i++) { adj[A[i]].push_back(make_pair(B[i], T[i])); adj[B[i]].push_back(make_pair(A[i], T[i])); } ///finding the longest existing path from any node and selecting the minimum of those within a connected tree ///--> in order to find the longest path and simultaneously select, let us do two dfs such that the first /// finds max distance in the subtree and the second finds the overall max distance O(6N) max_sub_dist.assign(N+1, -1); max_sub_dist[N] = 0; int maxi = 0, node; for(int i = 0; i<N; i++) { if(max_sub_dist[i]==-1) { dfs1(i); node = dfs2(i); if(max_sub_dist[node]>max_sub_dist[maxi]) maxi = node; trees.push_back(node); } } ///since now, we already know the trees that exist, we just need to optimally merge them for(int & tree : trees) { if(tree!=maxi) { adj[tree].push_back(make_pair(maxi, L)); adj[maxi].push_back(make_pair(tree, L)); } } ///now that the trees are merged, let's just find the maximum distance (tree diameter), between any two nodes final_dist.assign(N, -1); node = diameter_dfs(maxi); return final_dist[node]; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...