// #pragma GCC Optimize "trapv"
#include <bits/stdc++.h>
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
*/
using namespace std;
// using namespace __gnu_pbds;
using namespace chrono;
// mt19937 rng((int) std::chrono::steady_clock::now().time_since_epoch().count());
/*
template <class T> using ordered_set = tree <T, null_type, less <T>, rb_tree_tag, tree_order_statistics_node_update>;
*/
//***************** CONSTANTS *****************
const int MOD = 1000000007;
const int MXN = 505;
//***************** GLOBAL VARIABLES *****************
int A[MXN], B[MXN];
int64_t dp[MXN][MXN << 1], F[MXN], iF[MXN], C[MXN];
//***************** AUXILIARY STRUCTS *****************
int64_t power(int64_t n, int64_t x = MOD - 2){
int64_t res = 1;
while(x){
if(x & 1)
res = (res * n) % MOD;
x >>= 1;
n = (n * n) % MOD;
}
return res;
}
inline int64_t nCk(int n, int k){
return F[n] * ((iF[n - k] * iF[k]) % MOD) % MOD;
}
//***************** MAIN BODY *****************
/*
processing a range of values [D[i], D[i+1])
we consider every [l, r] such that [1, l-1] lie in [..., D[i])
and [l, r] lie in [D[i], D[i+1])
> find the number of schools in [l, r] which can send boats in range [D[i], D[i+1])
other schools are ignored
>> add (D[i+1] - D[i]) C x where x is value calculated in >
dp[i][j] -> insert i into j th interval
dp[r][j] = sum(dp[l-1][j-1] + ways(l, r, j))
ways(l, r, j) = >>
C[i] -> no. of ways of picking up <= i items in increasing order from len items
dp[i][j] =
*/
void solve(){
int N;
cin >> N;
vector<int> D;
for(int i = 0; i < N; i++){
cin >> A[i] >> B[i];
D.push_back(A[i]);
D.push_back(B[i] + 1);
}
F[0] = F[1] = 1;
for(int i = 2; i < MXN; i++){
F[i] = (F[i-1] * 1LL * i) % MOD;
}
iF[MXN - 1] = power(F[MXN - 1]);
for(int i = MXN - 2; i >= 0; --i){
iF[i] = (iF[i+1] * 1LL * (i + 1)) % MOD;
}
sort(D.begin(), D.end());
D.erase(unique(D.begin(), D.end()), D.end());
int n = D.size() - 1;
int64_t ans = 0;
for(int _ = 0; _ < n; _++){
int len = D[_+1] - D[_];
for(int i = 1; i <= N; i++){
int64_t p = 1; C[i] = 0;
for(int j = 1; j <= i; j++){
p = (p * 1LL * (len - j + 1)) % MOD;
C[i] = (C[i] + (((p * iF[j]) % MOD) * nCk(i - 1, j - 1)) % MOD) % MOD;
}
}
for(int i = 0; i < N; i++) if(A[i] <= D[_] && B[i] >= D[_+1] - 1) {
int cnt = 1;
for(int j = i; --j >= 0;){
if(_) (dp[i][_] += dp[j][_-1] * C[cnt]) %= MOD;
cnt += (A[j] <= D[_] && B[i] >= D[_+1] - 1);
}
(dp[i][_] += C[cnt]) %= MOD;
ans = (ans + dp[i][_]) % MOD;
}
for(int i = 0; i < N; i++)
(dp[i][_] += dp[i][_-1]) %= MOD;
}
cout << ans << '\n';
}
//***************** *****************
int32_t main(){
ios_base::sync_with_stdio(NULL);
cin.tie(NULL);
#ifdef LOCAL
auto begin = high_resolution_clock::now();
#endif
int tc = 1;
// cin >> tc;
for (int t = 0; t < tc; t++)
solve();
#ifdef LOCAL
auto end = high_resolution_clock::now();
cout << fixed << setprecision(4);
cout << "Execution Time: " << duration_cast<duration<double>>(end - begin).count() << "seconds" << endl;
#endif
return 0;
}
/*
If code gives a WA, check for the following :
1. I/O format
2. Are you clearing all global variables in between tests if multitests are a thing
3. Can you definitively prove the logic
4. If the code gives an inexplicable TLE, and you are sure you have the best possible complexity,
use faster io
*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1619 ms |
4372 KB |
Output is correct |
2 |
Correct |
1603 ms |
4344 KB |
Output is correct |
3 |
Correct |
1599 ms |
4272 KB |
Output is correct |
4 |
Correct |
1618 ms |
4348 KB |
Output is correct |
5 |
Correct |
1605 ms |
4268 KB |
Output is correct |
6 |
Correct |
1605 ms |
4272 KB |
Output is correct |
7 |
Correct |
1600 ms |
4268 KB |
Output is correct |
8 |
Correct |
1592 ms |
4272 KB |
Output is correct |
9 |
Correct |
1594 ms |
4304 KB |
Output is correct |
10 |
Correct |
1659 ms |
4272 KB |
Output is correct |
11 |
Correct |
1594 ms |
4320 KB |
Output is correct |
12 |
Correct |
1668 ms |
4268 KB |
Output is correct |
13 |
Correct |
1650 ms |
4272 KB |
Output is correct |
14 |
Correct |
1651 ms |
4344 KB |
Output is correct |
15 |
Correct |
1607 ms |
4356 KB |
Output is correct |
16 |
Correct |
287 ms |
3268 KB |
Output is correct |
17 |
Correct |
302 ms |
3060 KB |
Output is correct |
18 |
Correct |
306 ms |
3132 KB |
Output is correct |
19 |
Correct |
306 ms |
2976 KB |
Output is correct |
20 |
Correct |
297 ms |
3000 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1619 ms |
4372 KB |
Output is correct |
2 |
Correct |
1603 ms |
4344 KB |
Output is correct |
3 |
Correct |
1599 ms |
4272 KB |
Output is correct |
4 |
Correct |
1618 ms |
4348 KB |
Output is correct |
5 |
Correct |
1605 ms |
4268 KB |
Output is correct |
6 |
Correct |
1605 ms |
4272 KB |
Output is correct |
7 |
Correct |
1600 ms |
4268 KB |
Output is correct |
8 |
Correct |
1592 ms |
4272 KB |
Output is correct |
9 |
Correct |
1594 ms |
4304 KB |
Output is correct |
10 |
Correct |
1659 ms |
4272 KB |
Output is correct |
11 |
Correct |
1594 ms |
4320 KB |
Output is correct |
12 |
Correct |
1668 ms |
4268 KB |
Output is correct |
13 |
Correct |
1650 ms |
4272 KB |
Output is correct |
14 |
Correct |
1651 ms |
4344 KB |
Output is correct |
15 |
Correct |
1607 ms |
4356 KB |
Output is correct |
16 |
Correct |
287 ms |
3268 KB |
Output is correct |
17 |
Correct |
302 ms |
3060 KB |
Output is correct |
18 |
Correct |
306 ms |
3132 KB |
Output is correct |
19 |
Correct |
306 ms |
2976 KB |
Output is correct |
20 |
Correct |
297 ms |
3000 KB |
Output is correct |
21 |
Incorrect |
1674 ms |
4176 KB |
Output isn't correct |
22 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
15 ms |
844 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1619 ms |
4372 KB |
Output is correct |
2 |
Correct |
1603 ms |
4344 KB |
Output is correct |
3 |
Correct |
1599 ms |
4272 KB |
Output is correct |
4 |
Correct |
1618 ms |
4348 KB |
Output is correct |
5 |
Correct |
1605 ms |
4268 KB |
Output is correct |
6 |
Correct |
1605 ms |
4272 KB |
Output is correct |
7 |
Correct |
1600 ms |
4268 KB |
Output is correct |
8 |
Correct |
1592 ms |
4272 KB |
Output is correct |
9 |
Correct |
1594 ms |
4304 KB |
Output is correct |
10 |
Correct |
1659 ms |
4272 KB |
Output is correct |
11 |
Correct |
1594 ms |
4320 KB |
Output is correct |
12 |
Correct |
1668 ms |
4268 KB |
Output is correct |
13 |
Correct |
1650 ms |
4272 KB |
Output is correct |
14 |
Correct |
1651 ms |
4344 KB |
Output is correct |
15 |
Correct |
1607 ms |
4356 KB |
Output is correct |
16 |
Correct |
287 ms |
3268 KB |
Output is correct |
17 |
Correct |
302 ms |
3060 KB |
Output is correct |
18 |
Correct |
306 ms |
3132 KB |
Output is correct |
19 |
Correct |
306 ms |
2976 KB |
Output is correct |
20 |
Correct |
297 ms |
3000 KB |
Output is correct |
21 |
Incorrect |
1674 ms |
4176 KB |
Output isn't correct |
22 |
Halted |
0 ms |
0 KB |
- |