Submission #445856

#TimeUsernameProblemLanguageResultExecution timeMemory
445856rainboySky Walking (IOI19_walk)C++14
57 / 100
554 ms280500 KiB
#include "walk.h" #include <stdlib.h> #include <string.h> using namespace std; typedef vector<int> vi; const int N = 100000, M = 100000, N_ = 1 << 18, N1 = 4000000, M_ = 4000000; /* N_ = pow2(ceil(log2(N))) */ const long long INF = 0x3f3f3f3f3f3f3f3f; long long min(long long a, long long b) { return a < b ? a : b; } unsigned int X = 12345; int rand_() { return (X *= 3) >> 1; } int ii[N], hh[M * 2]; int *aa; void sort(int *ii, int l, int r) { while (l < r) { int i = l, j = l, k = r, i_ = ii[l + rand_() % (r - l)], tmp; while (j < k) if (aa[ii[j]] == aa[i_]) j++; else if (aa[ii[j]] < aa[i_]) { tmp = ii[i], ii[i] = ii[j], ii[j] = tmp; i++, j++; } else { k--; tmp = ii[j], ii[j] = ii[k], ii[k] = tmp; } sort(ii, l, i); l = k; } } int ij[M_], ww[M_], m_; int *eh[N1], eo[N1], n_; void append(int i, int h) { int o = eo[i]++; if (o >= 2 && (o & o - 1) == 0) eh[i] = (int *) realloc(eh[i], o * 2 * sizeof *eh[i]); eh[i][o] = h; } int newnode() { eh[n_] = (int *) malloc(2 * sizeof *eh[n_]); return n_++; } void add(int i, int j, int w) { int h = m_++; ij[h] = i ^ j, ww[h] = w; append(i, h), append(j, h); } int pp[N], qq[N], top[N], yy1[N]; void push(int i, int y) { int t = newnode(); add(top[i], t, y - yy1[i]); top[i] = t, yy1[i] = y; } long long dd[N1]; int pq[N1], iq[1 + N1], cnt; int lt(int i, int j) { return dd[i] < dd[j]; } int p2(int p) { return (p *= 2) > cnt ? 0 : (p < cnt && lt(iq[p + 1], iq[p]) ? p + 1 : p); } void pq_up(int i) { int p, q, j; for (p = pq[i]; (q = p / 2) && lt(i, j = iq[q]); p = q) iq[pq[j] = p] = j; iq[pq[i] = p] = i; } void pq_dn(int i) { int p, q, j; for (p = pq[i]; (q = p2(p)) && lt(j = iq[q], i); p = q) iq[pq[j] = p] = j; iq[pq[i] = p] = i; } void pq_add_last(int i) { iq[pq[i] = ++cnt] = i; } int pq_remove_first() { int i = iq[1], j = iq[cnt--]; if (j != i) pq[j] = 1, pq_dn(j); pq[i] = 0; return i; } long long dijkstra(int s, int t) { memset(dd, 0x3f, n_ * sizeof *dd); dd[s] = 0, pq_add_last(s); while (cnt) { int i = pq_remove_first(), o; if (i == t) return dd[i]; for (o = eo[i]; o--; ) { int h = eh[i][o], j = i ^ ij[h]; long long d = dd[i] + ww[h]; if (dd[j] > d) { if (dd[j] == INF) pq_add_last(j); dd[j] = d, pq_up(j); } } } return -1; } int xx[N], yy[N], ll[M], rr[M], xx1[M * 2], zz[M], idx[M], zz1[M]; long long solve_using_dijkstra(vi xx_, vi yy_, vi ll_, vi rr_, vi zz_, int s, int t) { int n = xx_.size(), m = zz_.size(), h, i; for (i = 0; i < n; i++) { xx[i] = xx_[i], yy[i] = yy_[i]; ii[i] = i; } aa = yy, sort(ii, 0, n); for (h = 0; h < m; h++) { ll[h] = ll_[h], rr[h] = rr_[h], zz[h] = zz_[h]; hh[h] = h; } aa = zz, sort(hh, 0, m); for (i = 0; i < n; i++) { pp[i] = i - 1, qq[i] = i + 1; top[i] = newnode(), yy1[i] = 0; } for (h = 0, i = 0; h < m; h++) { int h_ = hh[h], i_; while (i < n && yy[i_ = ii[i]] < zz[h_]) { if (pp[i_] != -1) qq[pp[i_]] = qq[i_]; if (qq[i_] != n) pp[qq[i_]] = pp[i_]; i++; } for (i_ = ll[h_]; i_ != rr[h_]; i_ = qq[i_]) push(i_, zz[h_]); push(i_, zz[h_]); for (i_ = ll[h_]; i_ != rr[h_]; i_ = qq[i_]) add(top[i_], top[qq[i_]], xx[qq[i_]] - xx[i_]); } for (i = 0; i < n; i++) push(i, yy[i]); return dijkstra(s, t); } long long st1[N_ * 2], st2[N_ * 2]; void pul(int i) { int l = i << 1, r = l | 1; st1[i] = min(st1[l], st1[r]), st2[i] = min(st2[l], st2[r]); } void update(int i, long long x) { if (x == INF) st1[n_ + i] = st2[n_ + i] = INF; else st1[n_ + i] = x - zz1[i], st2[n_ + i] = x + zz1[i]; i += n_; while (i > 1) pul(i >>= 1); } long long query(int i) { long long x, y; int l, r; x = INF; for (l = 0 + n_, r = i + n_; l <= r; l >>= 1, r >>= 1) { if ((l & 1) == 1) x = min(x, st1[l++]); if ((r & 1) == 0) x = min(x, st1[r--]); } y = INF; for (l = i + n_, r = n_ - 1 + n_; l <= r; l >>= 1, r >>= 1) { if ((l & 1) == 1) y = min(y, st2[l++]); if ((r & 1) == 0) y = min(y, st2[r--]); } return min(x == INF ? INF : x + zz1[i], y == INF ? INF : y - zz1[i]); } long long dp[M]; long long solve_using_segtree(vi xx_, vi ll_, vi rr_, vi zz_) { long long ans; int n = xx_.size(), m = zz_.size(), h, i; for (i = 0; i < n; i++) xx[i] = xx_[i]; for (h = 0; h < m; h++) { ll[h] = ll_[h], rr[h] = rr_[h], zz[h] = zz_[h]; hh[h] = h; } aa = zz, sort(hh, 0, m); for (h = 0; h < m; h++) idx[hh[h]] = h, zz1[h] = zz[hh[h]]; for (h = 0; h < m * 2; h++) { xx1[h] = (h & 1) == 0 ? ll[h >> 1] << 1 | 0 : rr[h >> 1] << 1 | 1; hh[h] = h; } aa = xx1, sort(hh, 0, m * 2); n_ = 1; while (n_ < m) n_ <<= 1; memset(st1, 0x3f, n_ * 2 * sizeof *st1), memset(st2, 0x3f, n_ * 2 * sizeof *st2); ans = INF; for (h = 0; h < m * 2; h++) { int h_ = hh[h] >> 1; if ((hh[h] & 1) == 0) dp[h_] = xx1[hh[h]] == 0 ? zz[h_] : query(idx[h_]), update(idx[h_], dp[h_]); else { update(idx[h_], INF); if (xx1[hh[h]] == (n - 1 << 1 | 1)) ans = min(ans, dp[h_] + zz[h_] + xx[n - 1] - xx[0]); } } return ans == INF ? -1 : ans; } long long min_distance(vi xx_, vi yy_, vi ll_, vi rr_, vi zz_, int s, int t) { int n = xx_.size(); return s == 0 && t == n - 1 ? solve_using_segtree(xx_, ll_, rr_, zz_) : solve_using_dijkstra(xx_, yy_, ll_, rr_, zz_, s, t); }

Compilation message (stderr)

walk.cpp: In function 'void append(int, int)':
walk.cpp:49:23: warning: suggest parentheses around '-' in operand of '&' [-Wparentheses]
   49 |  if (o >= 2 && (o & o - 1) == 0)
      |                     ~~^~~
walk.cpp: In function 'long long int solve_using_segtree(vi, vi, vi, vi)':
walk.cpp:247:25: warning: suggest parentheses around '-' inside '<<' [-Wparentheses]
  247 |    if (xx1[hh[h]] == (n - 1 << 1 | 1))
      |                       ~~^~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...