This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include "parks.h"
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
#define debug(...) //ignore
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef long double ld;
namespace LCT {
/**
* Description: Link-Cut Tree with possibility to augment.
* \texttt{sz} is for path queries;
* \texttt{sub}, \texttt{vsub} are for subtree queries. \texttt{x->access()}
* brings \texttt{x} to the top of splay tree and propagates it (\textbf{call it!});
* the left subtree will be
* the path from \texttt{x} to the root and the right subtree will be empty.
* Then $\texttt{sub} = $ size of connected component
* and $\texttt{vsub} = $ number of nodes below \texttt{x}.
* \texttt{x->makeRoot()} ``rotates'' the tree so that \texttt{x} is root.
* Use \texttt{x->makeRoot(), y->access(), y->sum} for path queries.
* Time: O(\log N)
* Usage: vector<sn> lct; rep(i,0,n) lct[i]=new snode(i); link(lct[0],lct[2],1); cut(lct[2],lct[0]);
* Author: benq
* Source: Dhruv Rohatgi, Eric Zhang, Benq
* https://sites.google.com/site/kc97ble/container/splay-tree/splaytree-cpp-3
* https://codeforces.com/blog/entry/67637
* Status: tested on problems...
*/
typedef struct snode* sn;
struct snode { //////// VARIABLES
sn p, c[2]; // parent, children
bool flip = 0; // subtree flipped or not
int val = -1, sz; // value in node, # nodes in current splay tree
int sub, vsub = 0; // vsub stores sum of virtual children
int max_val = -1;
snode(int _val) : val(_val) {
p = c[0] = c[1] = NULL; calc(); }
friend int getSz(sn x) { return x?x->sz:0; }
friend int get_max_val(sn x) { return x?x->max_val:-1; }
friend int getSub(sn x) { return x?x->sub:0; }
void prop() { // lazy prop
if (!flip) return;
swap(c[0],c[1]); flip = 0;
rep(i,0,2) if (c[i]) c[i]->flip ^= 1;
}
void calc() { // recalc vals
rep(i,0,2) if (c[i]) c[i]->prop();
sz = 1+getSz(c[0])+getSz(c[1]);
sub = 1+getSub(c[0])+getSub(c[1])+vsub;
max_val = max({val, get_max_val(c[0]), get_max_val(c[1])});
}
void set(int v) { access(); val = v; calc(); }
// ============ SPLAY TREE OPERATIONS ==============
int dir() {
if (!p) return -2;
rep(i,0,2) if (p->c[i] == this) return i;
return -1; // p is path-parent pointer, not same splaytree
}
bool isRoot() { return dir() < 0; } // of splaytree
friend void setLink(sn x, sn y, int d) {
if (y) y->p = x;
if (d >= 0) x->c[d] = y; }
void rot() { // assume p and p->p propagated
assert(!isRoot()); int x = dir(); sn pa = p;
setLink(pa->p, this, pa->dir());
setLink(pa, c[x^1], x); setLink(this, pa, x^1);
pa->calc();
}
void splay() {
while (!isRoot() && !p->isRoot()) {
p->p->prop(), p->prop(), prop();
dir() == p->dir() ? p->rot() : rot();
rot();
}
if (!isRoot()) p->prop(), prop(), rot();
prop(); calc();
}
sn fbo(int b) { // (optional) find by order
prop(); int z = getSz(c[0]); // of splay tree
if (b == z) { splay(); return this; }
return b < z ? c[0]->fbo(b) : c[1] -> fbo(b-z-1);
}
// ============ BASE OPERATIONS ==============
void access() { // bring this to top of splaytree, propagate
for (sn v = this, pre = NULL; v; v = v->p) {
v->splay(); // now switch virtual children
if (pre) v->vsub -= pre->sub;
if (v->c[1]) v->vsub += v->c[1]->sub;
v->c[1] = pre; v->calc(); pre = v;
}
splay(); assert(!c[1]); // right subtree is empty
}
void makeRoot() { // make root of real tree
access(); flip ^= 1; access(); assert(!c[0] && !c[1]);
}
// ===================== QUERIES =====================
friend bool connected(sn x, sn y) { return lca(x,y); }
friend sn lca(sn x, sn y) {
if (x == y) return x;
x->access(), y->access(); if (!x->p) return NULL;
x->splay(); return x->p?:x;
}
int distRoot() { access(); return getSz(c[0]); }
sn getRoot() { // get (real tree) root of component
access(); sn a = this;
while (a->c[0]) a = a->c[0], a->prop();
a->access(); return a;
}
sn getPar(int b) { // get b-th parent on path to root
access(); b = getSz(c[0])-b; assert(b >= 0);
return fbo(b); // can also get min, max on path to root...
}
// ================= MODIFICATIONS =====================
friend void link(sn x, sn y, bool force = 1) {
assert(!connected(x,y)); // when force = 0,
if (force) y->makeRoot(); // assumes y has no parent
else { y->access(); assert(!y->c[0]); }
x->access(); setLink(y,x,0); y->calc();
}
friend void cut(sn y) { // cut from parent
y->access(); assert(y->c[0]);
y->c[0]->p = NULL; y->c[0] = NULL; y->calc();
}
friend void cut(sn x, sn y) { // if x, y adj in tree
x->makeRoot(); y->access();
assert(y->c[0] == x && !x->c[0] && !x->c[1]); cut(y);
}
};
}
int n = 0; // number of ground elements
struct PartitionMatroid { // partition matroid
vi cols;
vector<vi> has_col;
set<int> unused_cols;
vi used;
PartitionMatroid(vi c) : used(n) {
cols = c;
int mx = 0;
for(int c : cols) mx = max(mx,c);
has_col.resize(mx+1);
rep(i,0,n) has_col[c[i]].emplace_back(i);
rep(i,0,sz(has_col)) unused_cols.emplace(i);
}
void add(int i) {
assert(!used[i]);
assert(unused_cols.count(cols[i]));
unused_cols.erase(cols[i]);
used[i] = 1;
}
void rem(int i) {
assert(used[i]);
assert(!unused_cols.count(cols[i]));
unused_cols.emplace(cols[i]);
used[i] = 0;
}
int is_free(int b) { return unused_cols.count(cols[b]); }
vi find_exchangeAB(int a) { // if we remove a, which b can we add?
assert(used[a]);
vi res;
for(int b : has_col[cols[a]]) if(b != a) {
assert(!used[b]);
res.emplace_back(b);
}
return res;
}
};
struct GraphicMatroid {
vi u, v; // (u[i], v[i]) are the edges
int m; // # graph nodes;
vi bad, used;
vector<LCT::sn> lct;
vector<LCT::sn> lct_ed;
set<int> used_set;
GraphicMatroid(vi a, vi b, int m) : u(a), v(b), m(m), bad(n), used(n) {
lct.resize(m);
lct_ed.resize(n);
rep(i,0,m) lct[i] = new LCT::snode(-1);
rep(i,0,n) lct_ed[i] = new LCT::snode(-1);
}
void add(int i) {
assert(!used[i]);
used[i] = 1;
used_set.emplace(i);
link(lct[u[i]], lct_ed[i]);
link(lct[v[i]], lct_ed[i]);
}
void rem(int i) {
assert(used[i]);
used[i] = 0;
used_set.erase(i);
cut(lct[u[i]], lct_ed[i]);
cut(lct[v[i]], lct_ed[i]);
}
void clear_bad() {
fill(all(bad),0);
for(int i : used_set) lct_ed[i]->set(i);
}
void mark_bad(int i) {
if(bad[i]) return;
bad[i] = 1;
lct_ed[i]->set(-1);
}
bool is_free(int b) { // can we add b?
assert(!used[b]);
return !connected(lct[u[b]], lct[v[b]]);
}
int find_exchangeBA(int b) { // if we add b, which a should be removed?
// just find a single out-edge!
assert(!used[b]);
int x = u[b], y = v[b];
assert(connected(lct[x], lct[y]));
lct[x]->makeRoot();
lct[y]->access();
int res = lct[y]->max_val;
assert(res == -1 || (!bad[res] && used[res]));
return res;
}
~GraphicMatroid(){
rep(i,0,m) delete lct[i];
rep(i,0,n) delete lct_ed[i];
}
};
struct MatroidIsec {
PartitionMatroid& m1;
GraphicMatroid& m2;
vi used;
MatroidIsec(PartitionMatroid& m1, GraphicMatroid& m2) : m1(m1), m2(m2), used(n) {}
const int inf = 1e9;
vi layers;
bool forward() {
layers.assign(n, inf);
m2.clear_bad();
queue<int> q;
rep(b,0,n) if(m1.is_free(b)) {
layers[b] = 0;
q.push(b);
}
while(sz(q)) {
int x = q.front();
q.pop();
if(used[x]) {
int a = x;
for(int b : m1.find_exchangeAB(a)) if(layers[b] == inf) {
layers[b] = layers[a]+1;
q.push(b);
}
}
else {
int b = x, a;
if(m2.is_free(b)) return true; // found s,t-path!
while((a = m2.find_exchangeBA(b)) != -1) {
assert(layers[a] == inf);
m2.mark_bad(a);
layers[a] = layers[b]+1;
q.push(a);
}
}
}
return false;
}
vi bad, aug;
void push_flow() {
bad.assign(n,0);
m2.clear_bad();
vi todo;
rep(i,0,n) if(layers[i] == 0) todo.emplace_back(i);
for(int b : todo) {
if(bad[b]) continue;
if(!m1.is_free(b)) continue;
aug.clear();
if(dfs(b)) {
for(int i : aug) {
bad[i] = true;
m2.mark_bad(i);
}
for(int i : aug) if(used[i]) {
m1.rem(i);
m2.rem(i);
}
for(int i : aug) if(!used[i]) {
m1.add(i);
m2.add(i);
}
for(int i : aug) used[i] = !used[i];
aug.clear();
}
}
}
bool dfs(int x) {
assert(!bad[x]);
if(used[x]) {
int a = x;
for(int b : m1.find_exchangeAB(a)) {
if(layers[b] != layers[a]+1) continue;
if(bad[b]) continue;
if(dfs(b)) {
aug.emplace_back(a);
return true;
}
}
}
else {
int b = x, a;
if(m2.is_free(b)) {
aug.emplace_back(b);
return true;
}
while((a = m2.find_exchangeBA(b)) != -1) {
m2.mark_bad(a);
if(layers[a] != layers[b]+1) continue;
if(dfs(a)) {
aug.emplace_back(b);
return true;
}
}
}
bad[x] = true;
m2.mark_bad(x);
return false;
}
void solve() {
debug(used);
while(forward()) {
push_flow();
debug(used);
}
}
};
int construct_roads(std::vector<int> x, std::vector<int> y) {
map<pii,int> to_idx;
rep(i,0,sz(x)) to_idx[pii(x[i],y[i])] = i;
vi cols;
vi u,v;
auto add = [&](int x, int y, int c){
++n;
u.emplace_back(x);
v.emplace_back(y);
cols.emplace_back(c);
};
int col = 0;
map<pii,int> to_col;
map<int,pii> from_col;
auto which_col = [&](pii p) {
if(!to_col.count(p)) {
to_col[p] = col;
from_col[col] = p;
++col;
}
return to_col[p];
};
rep(i,0,sz(x)) {
if(to_idx.count(pii(x[i]+2,y[i]))) {
int j = to_idx[pii(x[i]+2,y[i])];
add(i,j,which_col(pii(x[i]+1, y[i]+1)));
add(i,j,which_col(pii(x[i]+1, y[i]-1)));
}
if(to_idx.count(pii(x[i],y[i]+2))) {
int j = to_idx[pii(x[i],y[i]+2)];
add(i,j,which_col(pii(x[i]+1, y[i]+1)));
add(i,j,which_col(pii(x[i]-1, y[i]+1)));
}
}
debug(cols);
debug(u);
debug(v);
PartitionMatroid m1(cols);
GraphicMatroid m2(u,v,sz(x));
MatroidIsec mi(m1, m2);
mi.solve();
vi U, V, A, B;
rep(i,0,n) if(mi.used[i]) {
U.emplace_back(u[i]);
V.emplace_back(v[i]);
pii p = from_col[cols[i]];
A.emplace_back(p.first);
B.emplace_back(p.second);
}
assert(sz(U) < sz(x));
if(sz(U) < sz(x)-1) return 0;
build(U, V, A, B);
return 1;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |