#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef pair<ll,ll> pl;
const ll lim=1e5+5;
ll n,m,q;
vector<char>ans;
struct UFDS{
ll par[lim];
UFDS(){
for(int i=0;i<lim;i++)par[i]=i;
}
ll findset(ll pos){
if(pos==par[pos])return pos;
else return par[pos]=findset(par[pos]);
}
void mergeset(ll a,ll b){
a = findset(a),b = findset(b);
if(a!=b)par[b]=a;
}
}ufds;
struct Edge{
ll x,a,b,idx;//x is the other guy, a and b are original order of edge
Edge(ll xx,ll aa,ll bb,ll ii){
x=xx,a=aa,b=bb,idx=ii;
}
Edge(){}
};
struct Graph{
vector<Edge>adjl[lim],nontree;
ll par[lim],depth[lim];
Edge paredge[lim];
bool vis[lim],root[lim];
Graph(){
fill(vis,vis+lim,0);
fill(root,root+lim,0);
fill(depth,depth+lim,0);
par[1]=1;
depth[1]=0;
}
void dfs(ll pos,ll pre_idx){
vis[pos]=1;
for(Edge &E:adjl[pos]){
if(E.idx==pre_idx){
swap(E,adjl[pos].back());
adjl[pos].pop_back();
break;
}
}
for(Edge E:adjl[pos]){
if(!vis[E.x]){
vis[E.x]=1;
par[E.x]=pos;
paredge[E.x]=E;
depth[E.x]=depth[pos]+1;
dfs(E.x,E.idx);
}
else if(pos<E.x){ //prevent duplication (each extra edge goes into nontree once only)
nontree.push_back(E);
}
}
return;
}
void proc(Edge E){//marks a cycle in the tree
ll ha=ufds.findset(E.a),hb=ufds.findset(E.b);
while(ha!=hb){
if(depth[ha]<depth[hb])swap(ha,hb);
ufds.mergeset(par[ha],ha);
ha=ufds.findset(par[ha]);
}
}
void init(){//Part 1, init graph and process the nontree edges
for(int i=1;i<=n;i++){
if(vis[i]==0)dfs(i,-1),root[i]=1;
}
for(auto E:nontree)proc(E);//mark the cycles
}
//Part 2, answering the queries
void query(ll a,ll b){
ll ha=ufds.findset(a),hb=ufds.findset(b);
while(ha!=hb){
if(depth[ha]>depth[hb]){
ll nxt=ufds.findset(par[ha]);
ufds.mergeset(nxt,ha);
Edge E=paredge[ha];
assert((E.a==ha)^(E.b==ha));
ans[E.idx]= (E.a==ha)?'R':'L';
ha=nxt;
}
else{
ll nxt=ufds.findset(par[hb]);
ufds.mergeset(nxt,hb);
Edge E=paredge[hb];
assert((E.a==hb)^(E.b==hb));
ans[E.idx]= (E.a==hb)?'L':'R';
hb=nxt;
}
}
}
};
int main(){
ios_base::sync_with_stdio(0),cin.tie(NULL);
cin>>n>>m;
ans=vector<char>(m,'B');//Assume all edges can bidirectional at first
Graph G;
for(int i=0;i<m;i++){
ll a,b;
cin>>a>>b;
if(a==b)continue;
G.adjl[a].push_back(Edge(b,a,b,i));
G.adjl[b].push_back(Edge(a,a,b,i));
}
G.init();
cin>>q;
while(q--){
ll a,b;
cin>>a>>b;
G.query(a,b);
}
for(char c:ans)cout<<c;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
4 ms |
5540 KB |
Output is correct |
2 |
Correct |
4 ms |
5580 KB |
Output is correct |
3 |
Correct |
4 ms |
5600 KB |
Output is correct |
4 |
Correct |
4 ms |
5580 KB |
Output is correct |
5 |
Correct |
4 ms |
5648 KB |
Output is correct |
6 |
Correct |
6 ms |
5580 KB |
Output is correct |
7 |
Correct |
5 ms |
5580 KB |
Output is correct |
8 |
Correct |
4 ms |
5580 KB |
Output is correct |
9 |
Correct |
5 ms |
5580 KB |
Output is correct |
10 |
Correct |
4 ms |
5580 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
4 ms |
5540 KB |
Output is correct |
2 |
Correct |
4 ms |
5580 KB |
Output is correct |
3 |
Correct |
4 ms |
5600 KB |
Output is correct |
4 |
Correct |
4 ms |
5580 KB |
Output is correct |
5 |
Correct |
4 ms |
5648 KB |
Output is correct |
6 |
Correct |
6 ms |
5580 KB |
Output is correct |
7 |
Correct |
5 ms |
5580 KB |
Output is correct |
8 |
Correct |
4 ms |
5580 KB |
Output is correct |
9 |
Correct |
5 ms |
5580 KB |
Output is correct |
10 |
Correct |
4 ms |
5580 KB |
Output is correct |
11 |
Correct |
78 ms |
14760 KB |
Output is correct |
12 |
Correct |
76 ms |
15420 KB |
Output is correct |
13 |
Correct |
83 ms |
14780 KB |
Output is correct |
14 |
Correct |
104 ms |
14416 KB |
Output is correct |
15 |
Correct |
118 ms |
14328 KB |
Output is correct |
16 |
Correct |
96 ms |
11976 KB |
Output is correct |
17 |
Correct |
85 ms |
13228 KB |
Output is correct |
18 |
Correct |
85 ms |
12136 KB |
Output is correct |
19 |
Correct |
74 ms |
14012 KB |
Output is correct |
20 |
Correct |
67 ms |
13812 KB |
Output is correct |
21 |
Correct |
62 ms |
13432 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
4 ms |
5540 KB |
Output is correct |
2 |
Correct |
4 ms |
5580 KB |
Output is correct |
3 |
Correct |
4 ms |
5600 KB |
Output is correct |
4 |
Correct |
4 ms |
5580 KB |
Output is correct |
5 |
Correct |
4 ms |
5648 KB |
Output is correct |
6 |
Correct |
6 ms |
5580 KB |
Output is correct |
7 |
Correct |
5 ms |
5580 KB |
Output is correct |
8 |
Correct |
4 ms |
5580 KB |
Output is correct |
9 |
Correct |
5 ms |
5580 KB |
Output is correct |
10 |
Correct |
4 ms |
5580 KB |
Output is correct |
11 |
Correct |
78 ms |
14760 KB |
Output is correct |
12 |
Correct |
76 ms |
15420 KB |
Output is correct |
13 |
Correct |
83 ms |
14780 KB |
Output is correct |
14 |
Correct |
104 ms |
14416 KB |
Output is correct |
15 |
Correct |
118 ms |
14328 KB |
Output is correct |
16 |
Correct |
96 ms |
11976 KB |
Output is correct |
17 |
Correct |
85 ms |
13228 KB |
Output is correct |
18 |
Correct |
85 ms |
12136 KB |
Output is correct |
19 |
Correct |
74 ms |
14012 KB |
Output is correct |
20 |
Correct |
67 ms |
13812 KB |
Output is correct |
21 |
Correct |
62 ms |
13432 KB |
Output is correct |
22 |
Correct |
124 ms |
14288 KB |
Output is correct |
23 |
Correct |
110 ms |
13128 KB |
Output is correct |
24 |
Correct |
123 ms |
13224 KB |
Output is correct |
25 |
Correct |
110 ms |
16416 KB |
Output is correct |
26 |
Correct |
131 ms |
14100 KB |
Output is correct |
27 |
Correct |
96 ms |
13152 KB |
Output is correct |
28 |
Correct |
49 ms |
12648 KB |
Output is correct |
29 |
Correct |
94 ms |
14428 KB |
Output is correct |
30 |
Correct |
92 ms |
14388 KB |
Output is correct |
31 |
Correct |
122 ms |
14680 KB |
Output is correct |
32 |
Correct |
87 ms |
15492 KB |
Output is correct |