// O((n + q) sqrt(q))
#include "candies.h"
#include <algorithm>
#include <cmath>
#include <vector>
struct Buckets {
int n;
int bucket_size, bucket_cnt;
std::vector<int> vals;
std::vector<long long> mini, maxi, sums;
Buckets(int _n): n(_n) {
bucket_size = sqrt(n);
bucket_cnt = (n + bucket_size - 1) / bucket_size;
vals.assign(n, 0);
mini.assign(bucket_cnt, 0);
maxi.assign(bucket_cnt, 0);
sums.assign(bucket_cnt, 0);
}
void update(int x, int val) {
vals[x] = val;
int bucket = x / bucket_size;
mini[bucket] = maxi[bucket] = sums[bucket] = 0;
for (int i = std::min(n, (bucket + 1) * bucket_size) - 1;
i >= bucket * bucket_size; --i) {
sums[bucket] += vals[i];
maxi[bucket] = std::max(maxi[bucket], sums[bucket]);
mini[bucket] = std::min(mini[bucket], sums[bucket]);
}
}
std::tuple<int, int, int> query(int c) {
int sufsum = 0, sufmin = 0, sufmax = 0;
for (int bucket = bucket_cnt - 1; bucket >= 0; --bucket) {
long long nsufsum = sufsum + sums[bucket],
nsufmin = std::min(1LL * sufmin, sufsum + mini[bucket]),
nsufmax = std::max(1LL * sufmax, sufsum + maxi[bucket]);
if (nsufmax - nsufmin > c) {
for (int i = std::min(n, (bucket + 1) * bucket_size) - 1;
i >= bucket * bucket_size; --i) {
sufsum += vals[i];
sufmin = std::min(sufmin, sufsum);
sufmax = std::max(sufmax, sufsum);
if (sufmax - sufmin > c) return std::make_tuple(sufmin, sufmax, i);
}
}
sufsum = nsufsum; sufmax = nsufmax; sufmin = nsufmin;
}
return std::make_tuple(sufmin, sufmax, 0);
}
inline int at(int x) { return vals[x]; }
};
std::vector<int> distribute_candies(std::vector<int> c, std::vector<int> l,
std::vector<int> r, std::vector<int> v) {
int n = c.size(), q = v.size();
std::vector<std::vector<std::pair<int, int>>> queriesL(n), queriesR(n);
for (int i = 0; i < q; ++i) {
queriesL[l[i]].emplace_back(i, v[i]);
queriesR[r[i]].emplace_back(i, v[i]);
}
std::vector<int> s(n);
Buckets tree(q);
for (int i = 0; i < n; ++i) {
for (auto [idx, val] : queriesL[i]) {
tree.update(idx, -val);
}
auto [mini, maxi, idx] = tree.query(c[i]);
if (maxi - mini <= c[i]) {
s[i] = -mini;
} else {
if (tree.at(idx) < 0) {
s[i] = c[i] - maxi;
} else {
s[i] = -mini;
}
}
for (auto [idx, val] : queriesR[i]) {
tree.update(idx, 0);
}
}
return s;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
204 KB |
Output is correct |
2 |
Correct |
1 ms |
204 KB |
Output is correct |
3 |
Correct |
3 ms |
332 KB |
Output is correct |
4 |
Correct |
2 ms |
332 KB |
Output is correct |
5 |
Correct |
5 ms |
460 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1034 ms |
25468 KB |
Output is correct |
2 |
Correct |
1082 ms |
25552 KB |
Output is correct |
3 |
Correct |
1187 ms |
25516 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
332 KB |
Output is correct |
2 |
Correct |
779 ms |
11444 KB |
Output is correct |
3 |
Correct |
112 ms |
12200 KB |
Output is correct |
4 |
Correct |
1233 ms |
25460 KB |
Output is correct |
5 |
Correct |
1138 ms |
25468 KB |
Output is correct |
6 |
Correct |
1029 ms |
25556 KB |
Output is correct |
7 |
Correct |
1016 ms |
25460 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
204 KB |
Output is correct |
2 |
Correct |
1 ms |
332 KB |
Output is correct |
3 |
Correct |
759 ms |
9032 KB |
Output is correct |
4 |
Correct |
81 ms |
12100 KB |
Output is correct |
5 |
Correct |
912 ms |
20660 KB |
Output is correct |
6 |
Correct |
871 ms |
20648 KB |
Output is correct |
7 |
Correct |
839 ms |
20668 KB |
Output is correct |
8 |
Correct |
915 ms |
20652 KB |
Output is correct |
9 |
Correct |
1156 ms |
20664 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
204 KB |
Output is correct |
2 |
Correct |
1 ms |
204 KB |
Output is correct |
3 |
Correct |
3 ms |
332 KB |
Output is correct |
4 |
Correct |
2 ms |
332 KB |
Output is correct |
5 |
Correct |
5 ms |
460 KB |
Output is correct |
6 |
Correct |
1034 ms |
25468 KB |
Output is correct |
7 |
Correct |
1082 ms |
25552 KB |
Output is correct |
8 |
Correct |
1187 ms |
25516 KB |
Output is correct |
9 |
Correct |
1 ms |
332 KB |
Output is correct |
10 |
Correct |
779 ms |
11444 KB |
Output is correct |
11 |
Correct |
112 ms |
12200 KB |
Output is correct |
12 |
Correct |
1233 ms |
25460 KB |
Output is correct |
13 |
Correct |
1138 ms |
25468 KB |
Output is correct |
14 |
Correct |
1029 ms |
25556 KB |
Output is correct |
15 |
Correct |
1016 ms |
25460 KB |
Output is correct |
16 |
Correct |
1 ms |
204 KB |
Output is correct |
17 |
Correct |
1 ms |
332 KB |
Output is correct |
18 |
Correct |
759 ms |
9032 KB |
Output is correct |
19 |
Correct |
81 ms |
12100 KB |
Output is correct |
20 |
Correct |
912 ms |
20660 KB |
Output is correct |
21 |
Correct |
871 ms |
20648 KB |
Output is correct |
22 |
Correct |
839 ms |
20668 KB |
Output is correct |
23 |
Correct |
915 ms |
20652 KB |
Output is correct |
24 |
Correct |
1156 ms |
20664 KB |
Output is correct |
25 |
Correct |
1 ms |
204 KB |
Output is correct |
26 |
Correct |
91 ms |
12072 KB |
Output is correct |
27 |
Correct |
769 ms |
11468 KB |
Output is correct |
28 |
Correct |
1090 ms |
25464 KB |
Output is correct |
29 |
Correct |
1068 ms |
25464 KB |
Output is correct |
30 |
Correct |
1022 ms |
25540 KB |
Output is correct |
31 |
Correct |
1082 ms |
25464 KB |
Output is correct |
32 |
Correct |
1002 ms |
25468 KB |
Output is correct |