#include <bits/stdc++.h>
using namespace std;
#define endl "\n"
#define f(i,a,b) for(int i=int(a);i<int(b);++i)
#define pr pair
#define ar array
#define fr first
#define sc second
#define vt vector
#define pb push_back
#define eb emplace_back
#define LB lower_bound
#define UB upper_bound
#define PQ priority_queue
#define SZ(x) ((int)(x).size())
#define all(a) (a).begin(),(a).end()
#define allr(a) (a).rbegin(),(a).rend()
#define mem(a,b) memset(a, b, sizeof(a))
template<class T> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; }
const long long INF = 1e16;
struct edge {
int node, weight;
edge(int _node, int _weight) : node(_node), weight(_weight) {}
};
struct centroid_decomposition {
int N;
vector<vector<edge>> adj;
vector<int> depth;
vector<int> subtree_size;
// parent of a node in centroid tree.
vector<int> centroid_parent;
vector<int> node_list;
// gives the distance of each node to its descendants in centroid tree.
vector<vector<long long>> dis; // from node to its ancestors.
bool found_centroid;
void init(int _N) {
N = _N;
adj.assign(N, {});
depth.resize(N);
subtree_size.resize(N);
centroid_parent.assign(N, -1);
dis.resize(N,{});
}
void add_edge(int u, int v, int w) {
assert(u != v);
adj[u].emplace_back(edge(v,w));
adj[v].emplace_back(edge(u,w));
}
// Erasing edges is O(number of nodes remaining) which is fine within our decomposition.
void erase_edge(int from, int to) {
for(edge &e : adj[from]) {
if(e.node == to) {
swap(e, adj[from].back());
adj[from].pop_back();
return;
}
}
assert(false);
}
int dfs(int node, long long weight = 0, int parent = -1, int root = -1) {
if(parent < 0) {
root = node;
node_list.clear();
}
if(found_centroid){
dis[node].pb(weight);
}
subtree_size[node] = 1;
node_list.push_back(node);
for(edge &e : adj[node]) {
if(e.node != parent) {
subtree_size[node] += dfs(e.node, e.weight + weight, node, parent < 0 ? node : root);
}
}
return subtree_size[node];
}
int centroid(int root) {
int n = dfs(root);
bool found;
// Repeatedly move to the subtree that is at least half of the tree, if such a subtree exists.
do {
found = false;
for(edge &e : adj[root]){
if(subtree_size[e.node] < subtree_size[root] && 2 * subtree_size[e.node] >= n) {
root = e.node;
found = true;
break;
}
}
} while(found);
return root;
}
// centroid parent of root of centroid tree is -1
void solve(int root) {
found_centroid = false;
root = centroid(root);
found_centroid = true;
dfs(root);
for(int node : node_list){
if(node != root){
centroid_parent[node] = root;
}
}
for(edge &e : adj[root]){
erase_edge(e.node, root);
}
// Recurse after solving root, so that edge erasures don't cause incorrect results.
for(edge &e : adj[root]){
solve(e.node);
}
}
}cd;
vt<long long> ans;
void turn_on(int _i){
for(int i = _i, cnt = 0; ~i; i = cd.centroid_parent[i], ++cnt){
ckmin(ans[i],cd.dis[_i][cnt]);
}
}
void turn_off(int _i){
for(int i = _i; ~i; i = cd.centroid_parent[i]){
ans[i] = INF;
}
}
void Init(int N, int A[], int B[], int D[]) {
ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cd.init(N);
ans.assign(N,INF);
f(e,0,N-1){
cd.add_edge(A[e],B[e],D[e]);
}
cd.solve(0);
f(i,0,N) reverse(all(cd.dis[i]));
return;
}
long long Query(int S, int X[], int T, int Y[]) {
f(i,0,S) turn_on(X[i]);
long long res = INF;
f(i,0,T){
for(int j = Y[i], cnt = 0; ~j; j = cd.centroid_parent[j], ++cnt){
ckmin(res, cd.dis[Y[i]][cnt] + ans[j]);
}
}
f(i,0,S) turn_off(X[i]);
return res;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
588 KB |
Output is correct |
2 |
Correct |
329 ms |
9320 KB |
Output is correct |
3 |
Correct |
364 ms |
9764 KB |
Output is correct |
4 |
Correct |
388 ms |
9732 KB |
Output is correct |
5 |
Correct |
386 ms |
9808 KB |
Output is correct |
6 |
Correct |
244 ms |
9028 KB |
Output is correct |
7 |
Correct |
369 ms |
9524 KB |
Output is correct |
8 |
Correct |
429 ms |
9532 KB |
Output is correct |
9 |
Correct |
381 ms |
9796 KB |
Output is correct |
10 |
Correct |
235 ms |
9044 KB |
Output is correct |
11 |
Correct |
387 ms |
9476 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
460 KB |
Output is correct |
2 |
Correct |
2963 ms |
133544 KB |
Output is correct |
3 |
Correct |
4464 ms |
167924 KB |
Output is correct |
4 |
Correct |
1041 ms |
83420 KB |
Output is correct |
5 |
Correct |
5627 ms |
208708 KB |
Output is correct |
6 |
Correct |
4548 ms |
169024 KB |
Output is correct |
7 |
Correct |
1316 ms |
36324 KB |
Output is correct |
8 |
Correct |
444 ms |
26148 KB |
Output is correct |
9 |
Correct |
1489 ms |
43108 KB |
Output is correct |
10 |
Correct |
1204 ms |
37552 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
588 KB |
Output is correct |
2 |
Correct |
329 ms |
9320 KB |
Output is correct |
3 |
Correct |
364 ms |
9764 KB |
Output is correct |
4 |
Correct |
388 ms |
9732 KB |
Output is correct |
5 |
Correct |
386 ms |
9808 KB |
Output is correct |
6 |
Correct |
244 ms |
9028 KB |
Output is correct |
7 |
Correct |
369 ms |
9524 KB |
Output is correct |
8 |
Correct |
429 ms |
9532 KB |
Output is correct |
9 |
Correct |
381 ms |
9796 KB |
Output is correct |
10 |
Correct |
235 ms |
9044 KB |
Output is correct |
11 |
Correct |
387 ms |
9476 KB |
Output is correct |
12 |
Correct |
2 ms |
460 KB |
Output is correct |
13 |
Correct |
2963 ms |
133544 KB |
Output is correct |
14 |
Correct |
4464 ms |
167924 KB |
Output is correct |
15 |
Correct |
1041 ms |
83420 KB |
Output is correct |
16 |
Correct |
5627 ms |
208708 KB |
Output is correct |
17 |
Correct |
4548 ms |
169024 KB |
Output is correct |
18 |
Correct |
1316 ms |
36324 KB |
Output is correct |
19 |
Correct |
444 ms |
26148 KB |
Output is correct |
20 |
Correct |
1489 ms |
43108 KB |
Output is correct |
21 |
Correct |
1204 ms |
37552 KB |
Output is correct |
22 |
Correct |
3550 ms |
134228 KB |
Output is correct |
23 |
Correct |
4005 ms |
137612 KB |
Output is correct |
24 |
Correct |
5969 ms |
169904 KB |
Output is correct |
25 |
Correct |
5844 ms |
173372 KB |
Output is correct |
26 |
Correct |
5871 ms |
170280 KB |
Output is correct |
27 |
Correct |
7069 ms |
208760 KB |
Output is correct |
28 |
Correct |
1327 ms |
87572 KB |
Output is correct |
29 |
Correct |
5653 ms |
169896 KB |
Output is correct |
30 |
Correct |
5641 ms |
169812 KB |
Output is correct |
31 |
Correct |
5600 ms |
169952 KB |
Output is correct |
32 |
Correct |
1588 ms |
44532 KB |
Output is correct |
33 |
Correct |
472 ms |
27132 KB |
Output is correct |
34 |
Correct |
1006 ms |
33008 KB |
Output is correct |
35 |
Correct |
1018 ms |
33400 KB |
Output is correct |
36 |
Correct |
1341 ms |
35516 KB |
Output is correct |
37 |
Correct |
1408 ms |
35564 KB |
Output is correct |