Submission #43258

# Submission time Handle Problem Language Result Execution time Memory
43258 2018-03-11T16:55:47 Z krauch Chase (CEOI17_chase) C++14
100 / 100
1521 ms 361632 KB
/*
 _    _    _______   _    _
| |  / /  |  _____| | |  / /
| | / /   | |       | | / /
| |/ /    | |_____  | |/ /
| |\ \    |  _____| | |\ \
| | \ \   | |       | | \ \
| |  \ \  | |_____  | |  \ \
|_|   \_\ |_______| |_|   \_\

*/
#include <bits/stdc++.h>

using namespace std;

typedef unsigned long long ull;
typedef long long ll;
typedef double ld;
typedef pair <int, int> PII;
typedef pair <ll, ll> PLL;
typedef pair < ll, int > PLI;


#define F first
#define S second
#define pb push_back
#define eb emplace_back
#define right(x) x << 1 | 1
#define left(x) x << 1
#define forn(x, a, b) for (int x = a; x <= b; ++x)
#define for1(x, a, b) for (int x = a; x >= b; --x)
#define mkp make_pair
#define sz(a) (int)a.size()
#define all(a) a.begin(), a.end()
#define y1 kekekek

#define fname ""

const ll ool = 1e18 + 9;
const int oo = 1e9 + 9, base = 1e9 + 7;
const ld eps = 1e-7;
const int N = 1e5 + 6, M = 111;

int n, K;
ll res[N][2], dd[N][M][2], du[N][M][2], mx[M][2], p[N], ans;
vector < int > g[N];

void dfs(int v, int par) {
    ll sum = 0;

    for (auto to : g[v]) {
        if (to == par) continue;
        dfs(to, v);
        sum += p[to];
    }

    forn(i, 0, K + 1) forn(j, 0, 1) du[v][i][j] = dd[v][i][j] = res[v][j] = mx[i][j] = 0;
    mx[0][1] = -ool;

    for (auto to : g[v]) {
        if (to == par) continue;
        forn(i, 0, K) {
            res[v][0] = max(res[v][0], max(du[to][i][0], du[to][i][1] + p[v]) + max(mx[K - i][0], mx[K - i][1]));
            if (i < K) res[v][1] = max(res[v][1], max(du[to][i][0], du[to][i][1] + p[v]) + sum - p[to] + max(mx[K - i - 1][0], mx[K - i - 1][1]));
            du[v][i][0] = max(du[v][i][0], max(du[to][i][0], du[to][i][1] + p[v]));
            du[v][i + 1][1] = max(du[v][i + 1][1], max(du[to][i][0], du[to][i][1] + p[v]) + sum - p[to]);
            dd[v][i][0] = max(dd[v][i][0], max(dd[to][i][0], dd[to][i][1]));
            dd[v][i + 1][1] = max(dd[v][i + 1][1], max(dd[to][i][0], dd[to][i][1]) + sum);
        }
        forn(i, 0, K) {
            mx[i][0] = max(mx[i][0], dd[to][i][0]);
            mx[i][1] = max(mx[i][1], dd[to][i][1]);
        }
    }

    du[v][0][1] = -ool;
    dd[v][0][1] = -ool;
    du[v][1][1] = max(du[v][1][1], sum);
    dd[v][1][1] = max(dd[v][1][1], sum);
    res[v][1] = max(res[v][1], sum);
    forn(i, 1, K) {
        du[v][i][0] = max(du[v][i][0], du[v][i - 1][0]);
        du[v][i][1] = max(du[v][i][1], du[v][i - 1][1]);
        dd[v][i][0] = max(dd[v][i][0], dd[v][i - 1][0]);
        dd[v][i][1] = max(dd[v][i][1], dd[v][i - 1][1]);
    }

    ans = max(ans, max(res[v][0], res[v][1] + p[par]));
    ans = max(ans, max(du[v][K][0], du[v][K][1] + p[par]));
    ans = max(ans, max(dd[v][K][0], dd[v][K][1] + p[par]));
}

int main() {
	ios_base :: sync_with_stdio(0), cin.tie(0), cout.tie(0);

	#ifdef krauch
        freopen("input.txt", "r", stdin);
    #else
        //freopen(fname".in", "r", stdin);
        //freopen(fname".out", "w", stdout);
    #endif

    cin >> n >> K;
    forn(i, 1, n) {
        cin >> p[i];
    }

    forn(i, 1, n - 1) {
        int x, y;
        cin >> x >> y;
        g[x].eb(y);
        g[y].eb(x);
    }

    if (!K) {
        cout << "0\n";
        return 0;
    }

    dfs(1, 0);
    forn(i, 1, n) reverse(all(g[i]));
    dfs(1, 0);

    cout << ans << "\n";

	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2680 KB Output is correct
2 Correct 3 ms 2784 KB Output is correct
3 Correct 4 ms 2984 KB Output is correct
4 Correct 3 ms 2984 KB Output is correct
5 Correct 3 ms 2984 KB Output is correct
6 Correct 4 ms 2984 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2680 KB Output is correct
2 Correct 3 ms 2784 KB Output is correct
3 Correct 4 ms 2984 KB Output is correct
4 Correct 3 ms 2984 KB Output is correct
5 Correct 3 ms 2984 KB Output is correct
6 Correct 4 ms 2984 KB Output is correct
7 Correct 12 ms 6452 KB Output is correct
8 Correct 7 ms 6484 KB Output is correct
9 Correct 7 ms 6488 KB Output is correct
10 Correct 14 ms 6492 KB Output is correct
11 Correct 8 ms 6492 KB Output is correct
12 Correct 7 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1182 ms 361612 KB Output is correct
2 Correct 1166 ms 361612 KB Output is correct
3 Correct 895 ms 361612 KB Output is correct
4 Correct 353 ms 361612 KB Output is correct
5 Correct 1469 ms 361612 KB Output is correct
6 Correct 1467 ms 361612 KB Output is correct
7 Correct 1456 ms 361612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2680 KB Output is correct
2 Correct 3 ms 2784 KB Output is correct
3 Correct 4 ms 2984 KB Output is correct
4 Correct 3 ms 2984 KB Output is correct
5 Correct 3 ms 2984 KB Output is correct
6 Correct 4 ms 2984 KB Output is correct
7 Correct 12 ms 6452 KB Output is correct
8 Correct 7 ms 6484 KB Output is correct
9 Correct 7 ms 6488 KB Output is correct
10 Correct 14 ms 6492 KB Output is correct
11 Correct 8 ms 6492 KB Output is correct
12 Correct 7 ms 6492 KB Output is correct
13 Correct 1182 ms 361612 KB Output is correct
14 Correct 1166 ms 361612 KB Output is correct
15 Correct 895 ms 361612 KB Output is correct
16 Correct 353 ms 361612 KB Output is correct
17 Correct 1469 ms 361612 KB Output is correct
18 Correct 1467 ms 361612 KB Output is correct
19 Correct 1456 ms 361612 KB Output is correct
20 Correct 1471 ms 361612 KB Output is correct
21 Correct 59 ms 361612 KB Output is correct
22 Correct 1490 ms 361612 KB Output is correct
23 Correct 388 ms 361612 KB Output is correct
24 Correct 1521 ms 361612 KB Output is correct
25 Correct 914 ms 361612 KB Output is correct
26 Correct 1293 ms 361632 KB Output is correct
27 Correct 1249 ms 361632 KB Output is correct