Submission #43254

# Submission time Handle Problem Language Result Execution time Memory
43254 2018-03-11T16:01:22 Z krauch Chase (CEOI17_chase) C++14
40 / 100
4000 ms 362516 KB
/*
 _    _    _______   _    _
| |  / /  |  _____| | |  / /
| | / /   | |       | | / /
| |/ /    | |_____  | |/ /
| |\ \    |  _____| | |\ \
| | \ \   | |       | | \ \
| |  \ \  | |_____  | |  \ \
|_|   \_\ |_______| |_|   \_\

*/
#include <bits/stdc++.h>

using namespace std;

typedef unsigned long long ull;
typedef long long ll;
typedef double ld;
typedef pair <int, int> PII;
typedef pair <ll, ll> PLL;
typedef pair < ll, int > PLI;


#define F first
#define S second
#define pb push_back
#define eb emplace_back
#define right(x) x << 1 | 1
#define left(x) x << 1
#define forn(x, a, b) for (int x = a; x <= b; ++x)
#define for1(x, a, b) for (int x = a; x >= b; --x)
#define mkp make_pair
#define sz(a) (int)a.size()
#define all(a) a.begin(), a.end()
#define y1 kekekek

#define fname ""

const ll ool = 1e18 + 9;
const int oo = 1e9 + 9, base = 1e9 + 7;
const ld eps = 1e-7;
const int N = 1e5 + 6, M = 111;

int n, K;
ll res[N][2], dd[N][M][2], du[N][M][2], mx[M][2], p[N], ans;
vector < int > g[N];

void dfs(int v, int par) {
    ll sum = 0;

    for (auto to : g[v]) {
        if (to == par) continue;
        dfs(to, v);
        sum += p[to];
    }

    forn(i, 0, K + 1) forn(j, 0, 1) du[v][i][j] = dd[v][i][j] = res[v][j] = mx[i][j] = 0;
    mx[0][1] = -ool;

    for (auto to : g[v]) {
        if (to == par) continue;
        forn(i, 0, K) {
            res[v][0] = max(res[v][0], max(du[to][i][0], du[to][i][1] + p[v]) + max(mx[K - i][0], mx[K - i][1]));
            if (i < K) res[v][1] = max(res[v][1], max(du[to][i][0], du[to][i][1] + p[v]) + sum - p[to] + max(mx[K - i - 1][0], mx[K - i - 1][1]));
            du[v][i][0] = max(du[v][i][0], max(du[to][i][0], du[to][i][1] + p[v]));
            du[v][i + 1][1] = max(du[v][i + 1][1], max(du[to][i][0], du[to][i][1] + p[v]) + sum - p[to]);
            dd[v][i][0] = max(dd[v][i][0], max(dd[to][i][0], dd[to][i][1]));
            dd[v][i + 1][1] = max(dd[v][i + 1][1], max(dd[to][i][0], dd[to][i][1]) + sum);
        }
        forn(i, 0, K) {
            mx[i][0] = max(mx[i][0], dd[to][i][0]);
            mx[i][1] = max(mx[i][1], dd[to][i][1]);
        }
        ans = max(ans, max(res[to][0], res[to][1] + p[v]));
        ans = max(ans, max(du[to][K][0], du[to][K][1] + p[v]));
        ans = max(ans, max(dd[to][K][0], dd[to][K][1] + p[v]));
    }
    du[v][0][1] = -ool;
    dd[v][0][1] = -ool;
    du[v][1][1] = max(du[v][1][1], sum);
    dd[v][1][1] = max(dd[v][1][1], sum);
    forn(i, 1, K) {
        du[v][i][0] = max(du[v][i][0], du[v][i - 1][0]);
        du[v][i][1] = max(du[v][i][1], du[v][i - 1][1]);
        dd[v][i][0] = max(dd[v][i][0], dd[v][i - 1][0]);
        dd[v][i][1] = max(dd[v][i][1], dd[v][i - 1][1]);
    }
    ans = max(ans, sum + p[par]);
}

int main() {
	ios_base :: sync_with_stdio(0), cin.tie(0), cout.tie(0);

	#ifdef krauch
        freopen("input.txt", "r", stdin);
    #else
        //freopen(fname".in", "r", stdin);
        //freopen(fname".out", "w", stdout);
    #endif

    cin >> n >> K;
    assert(n >= 5);
    forn(i, 1, n) {
        cin >> p[i];
    }

    forn(i, 1, n - 1) {
        int x, y;
        cin >> x >> y;
        g[x].eb(y);
        g[y].eb(x);
    }

    if (!K) {
        cout << "0\n";
        return 0;
    }

//    dfs(1, 0);
//
//    ans = max(ans, du[1][K][0]);
//    ans = max(ans, du[1][K][1]);
//    ans = max(ans, dd[1][K][0]);
//    ans = max(ans, dd[1][K][1]);
//    ans = max(ans, res[1][1]);
//    ans = max(ans, res[1][0]);

    forn(i, 1, n) {
        dfs(i, 0);

        ans = max(ans, du[i][K][0]);
        ans = max(ans, du[i][K][1]);
        ans = max(ans, dd[i][K][0]);
        ans = max(ans, dd[i][K][1]);
        ans = max(ans, res[i][1]);
        ans = max(ans, res[i][0]);
    }

    cout << ans << "\n";

	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2680 KB Output is correct
2 Correct 3 ms 2908 KB Output is correct
3 Correct 3 ms 2908 KB Output is correct
4 Correct 4 ms 2908 KB Output is correct
5 Correct 4 ms 2908 KB Output is correct
6 Correct 3 ms 2988 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2680 KB Output is correct
2 Correct 3 ms 2908 KB Output is correct
3 Correct 3 ms 2908 KB Output is correct
4 Correct 4 ms 2908 KB Output is correct
5 Correct 4 ms 2908 KB Output is correct
6 Correct 3 ms 2988 KB Output is correct
7 Correct 2413 ms 6576 KB Output is correct
8 Correct 213 ms 6620 KB Output is correct
9 Correct 227 ms 6620 KB Output is correct
10 Correct 2625 ms 6620 KB Output is correct
11 Correct 1006 ms 6620 KB Output is correct
12 Correct 340 ms 6716 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 4107 ms 362516 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 2680 KB Output is correct
2 Correct 3 ms 2908 KB Output is correct
3 Correct 3 ms 2908 KB Output is correct
4 Correct 4 ms 2908 KB Output is correct
5 Correct 4 ms 2908 KB Output is correct
6 Correct 3 ms 2988 KB Output is correct
7 Correct 2413 ms 6576 KB Output is correct
8 Correct 213 ms 6620 KB Output is correct
9 Correct 227 ms 6620 KB Output is correct
10 Correct 2625 ms 6620 KB Output is correct
11 Correct 1006 ms 6620 KB Output is correct
12 Correct 340 ms 6716 KB Output is correct
13 Execution timed out 4107 ms 362516 KB Time limit exceeded
14 Halted 0 ms 0 KB -