#include <bits/stdc++.h>
using namespace std;
// macros
typedef long long ll;
typedef long double ld;
typedef pair<int, int> ii;
typedef pair<ll, ll> lll;
typedef tuple<int, int, int> iii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vll;
typedef vector<lll> vlll;
#define REP(a,b,c) for(int a=int(b); a<int(c); a++)
#define RE(a,c) REP(a,0,c)
#define RE1(a,c) REP(a,1,c+1)
#define REI(a,b,c) REP(a,b,c+1)
#define REV(a,b,c) for(int a=int(c-1); a>=int(b); a--)
#define FOR(a,b) for(auto& a : b)
#define all(a) a.begin(), a.end()
#define INF 1e18
#define EPS 1e-9
#define pb push_back
#define popb pop_back
#define fi first
#define se second
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
// input
template<class T> void IN(T& x) {cin >> x;}
template<class H, class... T> void IN(H& h, T&... t) {IN(h); IN(t...); }
// output
template<class T1, class T2> void OUT(const pair<T1,T2>& x);
template<class T> void OUT(const vector<T>& x);
template<class T> void OUT(const T& x) {cout << x;}
template<class H, class... T> void OUT(const H& h, const T&... t) {OUT(h); OUT(t...); }
template<class T1, class T2> void OUT(const pair<T1,T2>& x) {OUT(x.fi,' ',x.se);}
template<class T> void OUT(const vector<T>& x) {RE(i,x.size()) OUT(i==0?"":" ",x[i]);}
template<class... T> void OUTL(const T&... t) {OUT(t..., "\n"); }
template<class H> void OUTLS(const H& h) {OUTL(h); }
template<class H, class... T> void OUTLS(const H& h, const T&... t) {OUT(h,' '); OUTLS(t...); }
// dp
template<class T> bool ckmin(T&a, T&b) { bool bl = a > b; a = min(a,b); return bl;}
template<class T> bool ckmax(T&a, T&b) { bool bl = a < b; a = max(a,b); return bl;}
void program();
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
program();
}
// mod library
ll MOD=1e9+7;
inline ll mod(ll x_) {
return (x_)%MOD;
}
ll modpow(ll x_, ll N_) {
if(N_ == 0) return 1;
ll a = modpow(x_,N_/2);
a = (a*a)%MOD;
if(N_%2) a = (a*x_)%MOD;
return a;
}
ll inv(ll x_) {
return modpow(x_, MOD-2);
}
class mi {
public:
mi(ll v=0) {value = v;}
mi operator+ (ll rs) {return mod(value+rs);}
mi operator- (ll rs) {return mod(value-rs+MOD);}
mi operator* (ll rs) {return mod(value*rs);}
mi operator/ (ll rs) {return mod(value*inv(rs));}
mi& operator+=(ll rs) {*this = (*this)+rs; return *this;}
mi& operator-=(ll rs) {*this = (*this)-rs; return *this;}
mi& operator*=(ll rs) {*this = (*this)*rs; return *this;}
mi& operator/=(ll rs) {*this = (*this)/rs; return *this;}
operator ll&() {return value;}
ll value;
};
typedef vector<mi> vmi;
//===================//
// begin program //
//===================//
const int MX = 5e5;
const int N = (1<<23);
// in and output
int n, m;
string s[MX], p[MX], q[MX];
int ans[MX];
// 2d problem
int x[MX], y[MX];
int bgx[MX], edx[MX], bgy[MX], edy[MX];
// fenwick tree
int FT[MX];
void addFT(int i, int value) {
for(i++; i<MX; i+=i&-i) FT[i] += value;
}
int getFT(int i) {
int ans = 0;
for(i++; i; i-=i&-i) ans += FT[i];
return ans;
}
typedef tuple<int,int,int> T;
void program() {
// input
IN(n,m);
RE(i,n) IN(s[i]);
RE(i,m) IN(p[i],q[i]);
// will the coördinates
RE(i,m) reverse(all(q[i]));
RE(_,2) {
vector<string> v;
RE(i,n) v.pb(s[i]);
RE(i,m) v.pb((_?q:p)[i]);
sort(all(v));
RE(i,n)
(_?y:x)[i] = lower_bound(all(v),s[i]) - v.begin();
RE(i,m) {
(_?bgy:bgx)[i] = lower_bound(all(v),(_?q:p)[i]) - v.begin();
(_?q:p)[i].back()++;
(_?edy:edx)[i] = lower_bound(all(v),(_?q:p)[i]) - v.begin() - 1;
(_?q:p)[i].back()--;
}
RE(i,n) reverse(all(s[i]));
}
// coördinate compression
vi difx, dify;
RE(i,n) difx.pb(x[i]), dify.pb(y[i]);
RE(i,m) difx.pb(bgx[i]), difx.pb(edx[i]), dify.pb(bgy[i]), dify.pb(edy[i]);
sort(all(difx)); sort(all(dify));
RE(i,n) {
x[i] = lower_bound(all(difx),x[i])-difx.begin();
y[i] = lower_bound(all(dify),y[i])-dify.begin();
}
RE(i,m) {
bgx[i] = lower_bound(all(difx),bgx[i])-difx.begin();
edx[i] = lower_bound(all(difx),edx[i])-difx.begin();
bgy[i] = lower_bound(all(dify),bgy[i])-dify.begin();
edy[i] = lower_bound(all(dify),edy[i])-dify.begin();
}
// count points in rectangle
priority_queue<T,vector<T>,greater<T>> pq;
RE(i,m) pq.push({bgx[i],1,i});
RE(i,n) pq.push({x [i],2,i});
RE(i,m) pq.push({edx[i],3,i});
while(!pq.empty()) {
T p = pq.top(); pq.pop();
int a, t, b, i;
tie(a,t,i) = p;
if(t == 1) {
ans[i] -= getFT(edy[i]) - getFT(bgy[i]-1);
}
if(t == 2) {
addFT(y[i],1);
}
if(t == 3) {
ans[i] += getFT(edy[i]) - getFT(bgy[i]-1);
}
}
// output
RE(i,m) OUTL(ans[i]);
}
Compilation message
selling_rna.cpp: In function 'void program()':
selling_rna.cpp:170:19: warning: unused variable 'b' [-Wunused-variable]
170 | int a, t, b, i;
| ^
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
30 ms |
47336 KB |
Output is correct |
2 |
Correct |
30 ms |
47380 KB |
Output is correct |
3 |
Correct |
30 ms |
47288 KB |
Output is correct |
4 |
Correct |
29 ms |
47404 KB |
Output is correct |
5 |
Correct |
33 ms |
47328 KB |
Output is correct |
6 |
Correct |
29 ms |
47384 KB |
Output is correct |
7 |
Correct |
28 ms |
47396 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
56 ms |
55608 KB |
Output is correct |
2 |
Correct |
73 ms |
56396 KB |
Output is correct |
3 |
Correct |
73 ms |
56272 KB |
Output is correct |
4 |
Correct |
81 ms |
56004 KB |
Output is correct |
5 |
Correct |
68 ms |
52776 KB |
Output is correct |
6 |
Correct |
71 ms |
52864 KB |
Output is correct |
7 |
Correct |
75 ms |
57112 KB |
Output is correct |
8 |
Correct |
89 ms |
58052 KB |
Output is correct |
9 |
Correct |
102 ms |
58096 KB |
Output is correct |
10 |
Correct |
72 ms |
54336 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
179 ms |
55672 KB |
Output is correct |
2 |
Correct |
145 ms |
52084 KB |
Output is correct |
3 |
Correct |
159 ms |
54768 KB |
Output is correct |
4 |
Correct |
131 ms |
54216 KB |
Output is correct |
5 |
Correct |
143 ms |
52060 KB |
Output is correct |
6 |
Correct |
187 ms |
54788 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
30 ms |
47336 KB |
Output is correct |
2 |
Correct |
30 ms |
47380 KB |
Output is correct |
3 |
Correct |
30 ms |
47288 KB |
Output is correct |
4 |
Correct |
29 ms |
47404 KB |
Output is correct |
5 |
Correct |
33 ms |
47328 KB |
Output is correct |
6 |
Correct |
29 ms |
47384 KB |
Output is correct |
7 |
Correct |
28 ms |
47396 KB |
Output is correct |
8 |
Correct |
56 ms |
55608 KB |
Output is correct |
9 |
Correct |
73 ms |
56396 KB |
Output is correct |
10 |
Correct |
73 ms |
56272 KB |
Output is correct |
11 |
Correct |
81 ms |
56004 KB |
Output is correct |
12 |
Correct |
68 ms |
52776 KB |
Output is correct |
13 |
Correct |
71 ms |
52864 KB |
Output is correct |
14 |
Correct |
75 ms |
57112 KB |
Output is correct |
15 |
Correct |
89 ms |
58052 KB |
Output is correct |
16 |
Correct |
102 ms |
58096 KB |
Output is correct |
17 |
Correct |
72 ms |
54336 KB |
Output is correct |
18 |
Correct |
179 ms |
55672 KB |
Output is correct |
19 |
Correct |
145 ms |
52084 KB |
Output is correct |
20 |
Correct |
159 ms |
54768 KB |
Output is correct |
21 |
Correct |
131 ms |
54216 KB |
Output is correct |
22 |
Correct |
143 ms |
52060 KB |
Output is correct |
23 |
Correct |
187 ms |
54788 KB |
Output is correct |
24 |
Correct |
138 ms |
57044 KB |
Output is correct |
25 |
Correct |
214 ms |
59592 KB |
Output is correct |
26 |
Correct |
113 ms |
57088 KB |
Output is correct |
27 |
Correct |
149 ms |
57656 KB |
Output is correct |
28 |
Correct |
591 ms |
73752 KB |
Output is correct |
29 |
Correct |
540 ms |
64684 KB |
Output is correct |