#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pi = pair<int, int>;
#define sz(v) ((int)(v).size())
#define all(v) (v).begin(), (v).end()
const int MAXN = 100005;
typedef long long ll;
namespace DT{
using ll = long long;
bool ge(const ll& a, const ll& b) { return a >= b; }
bool le(const ll& a, const ll& b) { return a <= b; }
bool eq(const ll& a, const ll& b) { return a == b; }
bool gt(const ll& a, const ll& b) { return a > b; }
bool lt(const ll& a, const ll& b) { return a < b; }
int sgn(const ll& a) { return a >= 0 ? a ? 1 : 0 : -1; }
struct pt {
int x, y;
pt() { }
pt(ll _x, ll _y) : x(_x), y(_y) { }
bool operator<(const pt &p)const{
return make_pair(x, y) < make_pair(p.x, p.y);
}
bool operator>(const pt &p)const{
return make_pair(x, y) > make_pair(p.x, p.y);
}
pt operator-(const pt& p) const {
return pt(x - p.x, y - p.y);
}
ll cross(const pt& p) const {
return 1ll * x * p.y - 1ll * y * p.x;
}
ll cross(const pt& a, const pt& b) const {
return (a - *this).cross(b - *this);
}
ll dot(const pt& p) const {
return 1ll * x * p.x + 1ll * y * p.y;
}
ll dot(const pt& a, const pt& b) const {
return (a - *this).dot(b - *this);
}
ll sqrLength() const {
return this->dot(*this);
}
bool operator==(const pt& p) const {
return eq(x, p.x) && eq(y, p.y);
}
};
const pt inf_pt = pt(2e9, 2e9);
struct QuadEdge {
pt origin;
QuadEdge* rot = nullptr;
QuadEdge* onext = nullptr;
bool used = false;
QuadEdge* rev() const {
return rot->rot;
}
QuadEdge* lnext() const {
return rot->rev()->onext->rot;
}
QuadEdge* oprev() const {
return rot->onext->rot;
}
pt dest() const {
return rev()->origin;
}
};
QuadEdge* make_edge(pt from, pt to) {
QuadEdge* e1 = new QuadEdge;
QuadEdge* e2 = new QuadEdge;
QuadEdge* e3 = new QuadEdge;
QuadEdge* e4 = new QuadEdge;
e1->origin = from;
e2->origin = to;
e3->origin = e4->origin = inf_pt;
e1->rot = e3;
e2->rot = e4;
e3->rot = e2;
e4->rot = e1;
e1->onext = e1;
e2->onext = e2;
e3->onext = e4;
e4->onext = e3;
return e1;
}
void splice(QuadEdge* a, QuadEdge* b) {
swap(a->onext->rot->onext, b->onext->rot->onext);
swap(a->onext, b->onext);
}
void delete_edge(QuadEdge* e) {
splice(e, e->oprev());
splice(e->rev(), e->rev()->oprev());
delete e->rev()->rot;
delete e->rev();
delete e->rot;
delete e;
}
QuadEdge* connect(QuadEdge* a, QuadEdge* b) {
QuadEdge* e = make_edge(a->dest(), b->origin);
splice(e, a->lnext());
splice(e->rev(), b);
return e;
}
bool left_of(pt p, QuadEdge* e) {
return gt(p.cross(e->origin, e->dest()), 0);
}
bool right_of(pt p, QuadEdge* e) {
return lt(p.cross(e->origin, e->dest()), 0);
}
template <class T>
T det3(T a1, T a2, T a3, T b1, T b2, T b3, T c1, T c2, T c3) {
return a1 * (b2 * c3 - c2 * b3) - a2 * (b1 * c3 - c1 * b3) +
a3 * (b1 * c2 - c1 * b2);
}
bool in_circle(pt a, pt b, pt c, pt d) {
long double det = -det3<long double>(b.x, b.y, b.sqrLength(), c.x, c.y,
c.sqrLength(), d.x, d.y, d.sqrLength());
det += det3<long double>(a.x, a.y, a.sqrLength(), c.x, c.y, c.sqrLength(), d.x,
d.y, d.sqrLength());
det -= det3<long double>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), d.x,
d.y, d.sqrLength());
det += det3<long double>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), c.x,
c.y, c.sqrLength());
if(fabs(det) > 1e18) return det > 0;
else{
ll det = -det3<ll>(b.x, b.y, b.sqrLength(), c.x, c.y,
c.sqrLength(), d.x, d.y, d.sqrLength());
det += det3<ll>(a.x, a.y, a.sqrLength(), c.x, c.y, c.sqrLength(), d.x,
d.y, d.sqrLength());
det -= det3<ll>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), d.x,
d.y, d.sqrLength());
det += det3<ll>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), c.x,
c.y, c.sqrLength());
return (det > 0);
}
}
pair<QuadEdge*, QuadEdge*> build_tr(int l, int r, vector<pt>& p) {
if (r - l + 1 == 2) {
QuadEdge* res = make_edge(p[l], p[r]);
return make_pair(res, res->rev());
}
if (r - l + 1 == 3) {
QuadEdge *a = make_edge(p[l], p[l + 1]), *b = make_edge(p[l + 1], p[r]);
splice(a->rev(), b);
int sg = sgn(p[l].cross(p[l + 1], p[r]));
if (sg == 0)
return make_pair(a, b->rev());
QuadEdge* c = connect(b, a);
if (sg == 1)
return make_pair(a, b->rev());
else
return make_pair(c->rev(), c);
}
int mid = (l + r) / 2;
QuadEdge *ldo, *ldi, *rdo, *rdi;
tie(ldo, ldi) = build_tr(l, mid, p);
tie(rdi, rdo) = build_tr(mid + 1, r, p);
while (true) {
if (left_of(rdi->origin, ldi)) {
ldi = ldi->lnext();
continue;
}
if (right_of(ldi->origin, rdi)) {
rdi = rdi->rev()->onext;
continue;
}
break;
}
QuadEdge* basel = connect(rdi->rev(), ldi);
auto valid = [&basel](QuadEdge* e) { return right_of(e->dest(), basel); };
if (ldi->origin == ldo->origin)
ldo = basel->rev();
if (rdi->origin == rdo->origin)
rdo = basel;
while (true) {
QuadEdge* lcand = basel->rev()->onext;
if (valid(lcand)) {
while (in_circle(basel->dest(), basel->origin, lcand->dest(),
lcand->onext->dest())) {
QuadEdge* t = lcand->onext;
delete_edge(lcand);
lcand = t;
}
}
QuadEdge* rcand = basel->oprev();
if (valid(rcand)) {
while (in_circle(basel->dest(), basel->origin, rcand->dest(),
rcand->oprev()->dest())) {
QuadEdge* t = rcand->oprev();
delete_edge(rcand);
rcand = t;
}
}
if (!valid(lcand) && !valid(rcand))
break;
if (!valid(lcand) ||
(valid(rcand) && in_circle(lcand->dest(), lcand->origin,
rcand->origin, rcand->dest())))
basel = connect(rcand, basel->rev());
else
basel = connect(basel->rev(), lcand->rev());
}
return make_pair(ldo, rdo);
}
vector<tuple<pt, pt, pt>> delaunay(vector<pt> p) {
sort(p.begin(), p.end(), [](const pt& a, const pt& b) {
return lt(a.x, b.x) || (eq(a.x, b.x) && lt(a.y, b.y));
});
auto res = build_tr(0, (int)p.size() - 1, p);
QuadEdge* e = res.first;
vector<QuadEdge*> edges = {e};
while (lt(e->onext->dest().cross(e->dest(), e->origin), 0))
e = e->onext;
auto add = [&p, &e, &edges]() {
QuadEdge* curr = e;
do {
curr->used = true;
p.push_back(curr->origin);
edges.push_back(curr->rev());
curr = curr->lnext();
} while (curr != e);
};
add();
p.clear();
int kek = 0;
while (kek < (int)edges.size()) {
if (!(e = edges[kek++])->used)
add();
}
vector<tuple<pt, pt, pt>> ans;
for (int i = 0; i < (int)p.size(); i += 3) {
ans.push_back(make_tuple(p[i], p[i + 1], p[i + 2]));
}
return ans;
}
bool in_triangle(pt a, pt b, pt c, pt d){
if((b - a).cross(c - a) < 0) swap(b, c);
if((b - a).cross(d - a) < 0) return 0;
if((c - b).cross(d - b) < 0) return 0;
if((a - c).cross(d - c) < 0) return 0;
return 1;
}
}
struct edge{
int s, e; lint x;
bool operator<(const edge &e)const{
return x < e.x;
}
};
struct disj{
int pa[MAXN];
void init(int n){
iota(pa, pa + n, 0);
}
int find(int x){
return pa[x] = (pa[x] == x ? x : find(pa[x]));
}
bool uni(int p, int q){
p = find(p); q = find(q);
if(p == q) return 0;
pa[q] = p; return 1;
}
}disj;
namespace GGD{
int n;
pi a[100005];
bool cmp(pi a, pi b){return a.second < b.second;}
lint dist(pi x, pi y){return 1ll*(y.second - x.second) * (y.second - x.second) + 1ll*(y.first - x.first) * (y.first - x.first);}
lint closest(int s, int e){
if(s == e-2){
return min(min(dist(a[s],a[s+1]),dist(a[s+1],a[s+2])),dist(a[s],a[s+2]));
}
if(s == e-1){
return dist(a[s],a[e]);
}
int m = (s+e)/2;
lint res = min(closest(s,m),closest(m+1,e));
vector<pi> strip;
for (int i=s; i<=e; i++) {
if(1ll * abs(a[i].first - a[m].first) * abs(a[i].first - a[m].first) < res){
strip.push_back(a[i]);
}
}
sort(strip.begin(),strip.end(),cmp);
for (int i=0; i<strip.size(); i++) {
for (int j=i+1; j<strip.size() &&
1ll* (strip[j].second - strip[i].second) * (strip[j].second - strip[i].second) < res; j++){
res = min(res,dist(strip[j],strip[i]));
}
}
return res;
}
lint getdist(vector<DT::pt> v){
n = sz(v);
for (int i=0; i<n; i++) {
a[i] = pi(v[i].x, v[i].y);
}
sort(a,a+n);
return closest(0, n - 1);
}
};
vector<int> gph[MAXN];
int col[MAXN];
lint dist(DT::pt a, DT::pt b){
lint dx = b.x - a.x;
lint dy = b.y - a.y;
return dx*dx+dy*dy;
}
void dfs(int x, int c, int p = -1){
col[x] = c;
for(auto &i : gph[x]){
if(i != p) dfs(i, 3-c, x);
}
}
int main(){
int n;
scanf("%d",&n);
vector<DT::pt> a(n);
map<DT::pt, int> mp;
int cnt = 0;
for(auto &i : a){
scanf("%d %d",&i.x,&i.y);
mp[i] = cnt++;
}
vector<edge> v;
auto dt = DT::delaunay(a);
for(int i=0; i<sz(dt); i++){
auto [x, y, z] = dt[i];
auto edges = {make_pair(x, y), make_pair(x, z), make_pair(y, z)};
for(auto &[x, y] : edges){
v.push_back({mp[x], mp[y], dist(x,y)});
}
}
sort(all(v));
disj.init(n);
for(int i=0; i<sz(v); i++){
if(disj.uni(v[i].s, v[i].e)){
gph[v[i].s].push_back(v[i].e);
gph[v[i].e].push_back(v[i].s);
}
}
dfs(0, 1);
{
vector<DT::pt> v[2];
for(int i = 0; i < n; i++){
v[col[i] - 1].push_back(a[i]);
}
printf("%lld\n", min(GGD::getdist(v[0]), GGD::getdist(v[1])));
for(int i = 0; i < 2; i++){
printf("%d\n", sz(v[i]));
for(int j = 0; j < n; j++){
if(col[j] == i + 1) printf("%d ", j + 1);
}
puts("");
}
}
}
Compilation message
Main.cpp: In function 'lint GGD::closest(int, int)':
Main.cpp:312:18: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
312 | for (int i=0; i<strip.size(); i++) {
| ~^~~~~~~~~~~~~
Main.cpp:313:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
313 | for (int j=i+1; j<strip.size() &&
| ~^~~~~~~~~~~~~
Main.cpp: In function 'int main()':
Main.cpp:352:7: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
352 | scanf("%d",&n);
| ~~~~~^~~~~~~~~
Main.cpp:357:8: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
357 | scanf("%d %d",&i.x,&i.y);
| ~~~~~^~~~~~~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
2764 KB |
Output is correct |
2 |
Correct |
2 ms |
2764 KB |
Output is correct |
3 |
Correct |
2 ms |
2636 KB |
Output is correct |
4 |
Correct |
2 ms |
2636 KB |
Output is correct |
5 |
Correct |
2 ms |
2636 KB |
Output is correct |
6 |
Correct |
3 ms |
2636 KB |
Output is correct |
7 |
Correct |
3 ms |
2764 KB |
Output is correct |
8 |
Correct |
3 ms |
2648 KB |
Output is correct |
9 |
Correct |
3 ms |
2636 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
2764 KB |
Output is correct |
2 |
Correct |
2 ms |
2764 KB |
Output is correct |
3 |
Correct |
2 ms |
2636 KB |
Output is correct |
4 |
Correct |
2 ms |
2636 KB |
Output is correct |
5 |
Correct |
2 ms |
2636 KB |
Output is correct |
6 |
Correct |
3 ms |
2636 KB |
Output is correct |
7 |
Correct |
3 ms |
2764 KB |
Output is correct |
8 |
Correct |
3 ms |
2648 KB |
Output is correct |
9 |
Correct |
3 ms |
2636 KB |
Output is correct |
10 |
Correct |
17 ms |
4576 KB |
Output is correct |
11 |
Correct |
14 ms |
4436 KB |
Output is correct |
12 |
Correct |
16 ms |
4428 KB |
Output is correct |
13 |
Correct |
10 ms |
4556 KB |
Output is correct |
14 |
Correct |
10 ms |
4112 KB |
Output is correct |
15 |
Correct |
11 ms |
4444 KB |
Output is correct |
16 |
Correct |
14 ms |
4480 KB |
Output is correct |
17 |
Correct |
15 ms |
4524 KB |
Output is correct |
18 |
Correct |
11 ms |
4340 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
2764 KB |
Output is correct |
2 |
Correct |
2 ms |
2764 KB |
Output is correct |
3 |
Correct |
2 ms |
2636 KB |
Output is correct |
4 |
Correct |
2 ms |
2636 KB |
Output is correct |
5 |
Correct |
2 ms |
2636 KB |
Output is correct |
6 |
Correct |
3 ms |
2636 KB |
Output is correct |
7 |
Correct |
3 ms |
2764 KB |
Output is correct |
8 |
Correct |
3 ms |
2648 KB |
Output is correct |
9 |
Correct |
3 ms |
2636 KB |
Output is correct |
10 |
Correct |
17 ms |
4576 KB |
Output is correct |
11 |
Correct |
14 ms |
4436 KB |
Output is correct |
12 |
Correct |
16 ms |
4428 KB |
Output is correct |
13 |
Correct |
10 ms |
4556 KB |
Output is correct |
14 |
Correct |
10 ms |
4112 KB |
Output is correct |
15 |
Correct |
11 ms |
4444 KB |
Output is correct |
16 |
Correct |
14 ms |
4480 KB |
Output is correct |
17 |
Correct |
15 ms |
4524 KB |
Output is correct |
18 |
Correct |
11 ms |
4340 KB |
Output is correct |
19 |
Correct |
1045 ms |
97020 KB |
Output is correct |
20 |
Correct |
950 ms |
91252 KB |
Output is correct |
21 |
Correct |
1053 ms |
95384 KB |
Output is correct |
22 |
Correct |
554 ms |
97164 KB |
Output is correct |
23 |
Correct |
469 ms |
65104 KB |
Output is correct |
24 |
Correct |
619 ms |
95692 KB |
Output is correct |
25 |
Correct |
980 ms |
96884 KB |
Output is correct |
26 |
Correct |
1026 ms |
97244 KB |
Output is correct |
27 |
Correct |
603 ms |
69456 KB |
Output is correct |