#include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmin(T& _old, T _new) { return _old > _new && (_old = _new, true); }
template <class T>
bool chmax(T& _old, T _new) { return _old < _new && (_old = _new, true); }
/* basics */
namespace geo {
#define EPS 1e-8
template <typename T, enable_if_t<is_integral<T>::value, bool> = true>
int sign(T x) { return (x > 0) - (x < 0); }
template <typename T, enable_if_t<is_floating_point<T>::value, bool> = true>
int sign(T x) { return (x > EPS) - (x < -EPS); }
}; // namespace geo
/* point2D */
namespace geo {
template <typename T>
struct point2D {
T x, y;
point2D() = default;
point2D(T _x, T _y) : x(_x), y(_y) {}
template <typename U>
explicit point2D(const point2D<U>& p) : x(p.x), y(p.y) {}
using P = point2D;
bool operator<(const P& p) const { return tie(x, y) < tie(p.x, p.y); }
bool operator==(const P& p) const { return tie(x, y) == tie(p.x, p.y); }
bool operator!=(const P& p) const { return tie(x, y) != tie(p.x, p.y); }
friend P operator+(const P& a, const P& b) { return P(a.x + b.x, a.y + b.y); }
friend P operator-(const P& a, const P& b) { return P(a.x - b.x, a.y - b.y); }
friend P operator*(const P& a, const T& scalar) { return P(a.x * scalar, a.y * scalar); }
friend P operator*(const T& scalar, const P& a) { return P(scalar * a.x, scalar * a.y); }
friend P operator/(const P& a, const T& scalar) { return P(a.x / scalar, a.y / scalar); }
friend ostream& operator<<(ostream& o, const P& p) { return o << '(' << p.x << ", " << p.y << ')'; }
friend istream& operator>>(istream& i, P& p) { return i >> p.x >> p.y; }
T dot(const P& p) const { return x * p.x + y * p.y; }
T cross(const P& p) const { return x * p.y - y * p.x; }
T cross(const P& a, const P& b) const { return (a - *this).cross(b - *this); }
T dist2() const { return x * x + y * y; }
double dist() const { return sqrt(dist2()); }
P perp_cw() const { return P(y, -x); }
P perp_ccw() const { return P(-y, x); }
P unit() const { return *this / dist(); }
P normal() const { return perp_ccw().unit(); }
P unit_int() const { return x || y ? *this / gcd(x, y) : *this; }
P normal_int() const { return perp_ccw().unit_int(); }
bool same_dir(const P& p) const { return cross(p) == 0 && dot(p) > 0; }
int side_of(const P& s, const P& e) const {
if constexpr (is_integral_v<T>) {
return sign(s.cross(e, *this));
} else {
auto res = (e - s).cross(*this - s);
double l = (e - s).dist() * EPS;
return (res > l) - (res < -l);
}
}
double angle() const { return atan2(y, x); }
P rotate(double radian) const {
return P(x * cos(radian) - y * sin(radian), x * sin(radian) + y * cos(radian));
}
};
}; // namespace geo
namespace geo::point_in {
template <typename T, enable_if_t<is_integral<T>::value, bool> = true>
bool segment(const point2D<T>& p, const pair<point2D<T>, point2D<T>>& obj) {
return p.cross(obj.first, obj.second) == 0 &&
(obj.first - p).dot(obj.second - p) <= 0;
}
template <typename T, enable_if_t<is_floating_point<T>::value, bool> = true>
bool segment(const point2D<T>& p, const pair<point2D<T>, point2D<T>>& obj) {
return fabs(p.cross(obj.first, obj.second)) < EPS &&
(obj.first - p).dot(obj.second - p) < EPS;
}
template <typename T>
bool hull(const point2D<T>& p, const vector<point2D<T>>& obj, bool boundary) {
if (obj.size() < 3) return boundary && point_in::segment(p, pair(obj.front(), obj.back()));
int lo = 1, hi = obj.size() - 1;
if (p.side_of(obj[0], obj[lo]) <= -boundary || p.side_of(obj[0], obj[hi]) >= boundary)
return false;
while (lo + 1 != hi) {
int mid = (lo + hi) >> 1;
(p.side_of(obj[0], obj[mid]) == 1 ? lo : hi) = mid;
}
return p.side_of(obj[lo], obj[hi]) > -boundary;
}
template <typename T>
bool polygon(const point2D<T>& p, const vector<point2D<T>>& obj, bool boundary) {
bool ret = false;
for (int i = 0; i < int(obj.size()); ++i) {
const auto s = obj[i], e = obj[i == int(obj.size()) - 1 ? 0 : i + 1];
if (point_in::segment(p, pair(s, e))) return boundary;
ret ^= ((p.y < s.y) - (p.y < e.y)) * p.cross(s, e) > 0;
}
return ret;
}
}; // namespace geo::point_in
namespace geo::distance2 {
template <typename T>
T hull_diameter(const vector<point2D<T>>& hull) {
T diameter = 0;
int n = hull.size();
for (int i = 0, j = n > 1; i < j; ++i) {
for (;; j = j == n - 1 ? 0 : j + 1) {
chmax(diameter, (hull[i] - hull[j]).dist2());
if ((hull[(j + 1) % n] - hull[j]).cross(hull[i + 1] - hull[i]) >= 0)
break;
}
}
return diameter;
}
}; // namespace geo::distance2
namespace geo::intersected {
template <typename T>
bool segment_segment(const pair<point2D<T>, point2D<T>>& u, const pair<point2D<T>, point2D<T>>& v) {
if (u.first.side_of(v.first, v.second) * u.second.side_of(v.first, v.second) < 0 &&
v.first.side_of(u.first, u.second) * v.second.side_of(u.first, u.second) < 0)
return true;
return point_in::segment(u.first, v) || point_in::segment(u.second, v) ||
point_in::segment(v.first, u) || point_in::segment(v.second, u);
}
template <typename T>
bool line_line(const pair<point2D<T>, point2D<T>>& u, const pair<point2D<T>, point2D<T>>& v) {
return (u.second - u.first).cross(v.second - v.frst) || u.first.side_of(v.first, v.second) == 0;
}
}; // namespace geo::intersected
namespace geo::intersection {
template <typename T>
pair<int, point2D<double>> segment_segment(const pair<point2D<T>, point2D<T>>& u, const pair<point2D<T>, point2D<T>>& v) {
auto oa = v.first.cross(v.second, u.first), ob = v.first.cross(v.second, u.second),
oc = u.first.cross(u.second, v.first), od = u.first.cross(u.second, v.second);
if (sign(oa) * sign(ob) < 0 && sign(oc) * sign(od) < 0)
return {1, (point2D<double>(u.first) * ob - point2D<double>(u.second) * oa) / (ob - oa)};
vector<point2D<T>> pts;
if (point_in::segment(u.first, v)) pts.emplace_back(u.first);
if (point_in::segment(u.second, v)) pts.emplace_back(u.second);
if (point_in::segment(v.first, u)) pts.emplace_back(v.first);
if (point_in::segment(v.second, u)) pts.emplace_back(v.second);
if (pts.empty()) return {0, point2D<double>()};
if (any_of(pts.begin() + 1, pts.end(), [&](const auto& p) { return sign((p - pts.front()).dist()); }))
return {-1, point2D<double>()};
return {1, point2D<double>(pts.front())};
}
template <typename T>
point2D<double> line_line(const pair<point2D<T>, point2D<T>>& u, const pair<point2D<T>, point2D<T>>& v) {
return (u.first * v.first.cross(u.second, v.second) + u.second * v.first.cross(v.second, u.first)) /
(u.second - u.first).cross(v.second - v.first);
}
}; // namespace geo::intersection
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
#ifdef palilo
freopen("in", "r", stdin);
freopen("out", "w", stdout);
#endif
using point = geo::point2D<double>;
int n;
cin >> n;
vector<point> a(n);
for (auto& p : a) cin >> p;
for (int i = 0; i < n; ++i)
assert(a[i].side_of(a[(i + 1) % n], a[(i + 2) % n]) == 1);
vector<point> perp_units(n);
for (int i = 0; i < n - 1; ++i)
perp_units[i] = (a[i + 1] - a[i]).perp_ccw().unit();
perp_units.back() = (a[0] - a[n - 1]).perp_ccw().unit();
vector<pair<point, point>> line(n);
vector<point> deflated;
deflated.reserve(n);
auto ok = [&](double R) -> bool {
for (int i = 0; i < n - 1; ++i)
line[i] = {a[i] + perp_units[i] * R, a[i + 1] + perp_units[i] * R};
line[n - 1] = {a[n - 1] + perp_units[n - 1] * R, a[0] + perp_units[n - 1] * R};
// deque<pair<point, point>> dq;
vector<pair<point, point>> stk;
for (const auto& [s, e] : line) {
while (stk.size() > 1 && geo::intersection::line_line(stk.end()[-2], stk.end()[-1]).side_of(s, e) != 1)
stk.pop_back();
stk.emplace_back(s, e);
}
while (stk.size() > 2 && geo::intersection::line_line(stk.end()[-2], stk.end()[-1]).side_of(stk[0].first, stk[0].second) != 1)
stk.pop_back();
auto it = stk.begin();
while (stk.end() - it > 2 && geo::intersection::line_line(it[0], it[1]).side_of(stk.back().first, stk.back().second) != 1)
++it;
deflated.clear();
for (auto i = it; i != stk.end() - 1; ++i)
deflated.emplace_back(geo::intersection::line_line(*i, *(i + 1)));
deflated.emplace_back(geo::intersection::line_line(*stk.rbegin(), *it));
return sqrt(geo::distance2::hull_diameter(deflated)) >= 2 * R;
};
double lo = 0, hi = sqrt(geo::distance2::hull_diameter(a)) / 4;
while (hi - lo > 1e-4) {
double mid = (lo + hi) / 2;
(ok(mid) ? lo : hi) = mid;
}
cout << fixed << setprecision(3)
<< lo;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
204 KB |
Output is correct |
2 |
Correct |
1 ms |
204 KB |
Output is correct |
3 |
Correct |
2 ms |
332 KB |
Output is correct |
4 |
Correct |
1 ms |
332 KB |
Output is correct |
5 |
Correct |
5 ms |
588 KB |
Output is correct |
6 |
Correct |
27 ms |
1976 KB |
Output is correct |
7 |
Correct |
29 ms |
1744 KB |
Output is correct |
8 |
Correct |
42 ms |
2360 KB |
Output is correct |
9 |
Correct |
73 ms |
4232 KB |
Output is correct |
10 |
Correct |
118 ms |
6028 KB |
Output is correct |