#include <bits/stdc++.h>
#include "werewolf.h"
template <class T> using Vec = std::vector<T>;
struct UnionFind {
Vec<int> par;
Vec<Vec<int>> children;
UnionFind(const int n) : par(n), children(n) {
std::iota(par.begin(), par.end(), 0);
}
int find(const int u) {
return par[u] == u ? u : par[u] = find(par[u]);
}
void absorb(int u, int v) {
u = find(u);
v = find(v);
if (u == v) {
return;
}
par[v] = u;
children[u].push_back(v);
}
std::pair<Vec<int>, Vec<std::pair<int, int>>> build(const int root) {
const int n = (int) par.size();
Vec<int> ord;
ord.reserve(n);
Vec<std::pair<int, int>> range(n);
int timer = 0;
auto dfs = [&](auto&& dfs, const int u) -> void {
range[u].first = timer++;
ord.push_back(u);
for (const auto v : children[u]) {
dfs(dfs, v);
}
range[u].second = timer;
};
dfs(dfs, root);
return std::make_pair(std::move(ord), std::move(range));
}
};
struct Fenwick {
Vec<int> data;
Fenwick(const int n): data(n + 1) {}
void add(int i, const int x) {
i += 1;
while (i < (int) data.size()) {
data[i] += x;
i += i & -i;
}
}
int get(int i) const {
int x = 0;
while (i > 0) {
x += data[i];
i -= i & -i;
}
return x;
}
int fold(const int l, const int r) const {
return get(r) - get(l);
}
};
Vec<int> check_validity(int N, Vec<int> X, Vec<int> Y, Vec<int> S, Vec<int> E, Vec<int> L, Vec<int> R) {
const int M = (int) X.size();
const int Q = (int) S.size();
Vec<Vec<int>> graph(N);
for (int i = 0; i < M; ++i) {
graph[X[i]].push_back(Y[i]);
graph[Y[i]].push_back(X[i]);
}
UnionFind asc(N), dsc(N);
Vec<Vec<int>> rqs(N), lqs(N);
for (int i = 0; i < Q; ++i) {
rqs[R[i]].push_back(i);
lqs[L[i]].push_back(i);
}
Vec<int> rvert(Q), lvert(Q);
for (int u = 0; u < N; ++u) {
for (const auto v : graph[u]) {
if (v < u) {
asc.absorb(u, v);
}
}
for (const auto q : rqs[u]) {
rvert[q] = asc.find(E[q]);
}
}
for (int u = N - 1; u >= 0; --u) {
for (const auto v : graph[u]) {
if (u < v) {
dsc.absorb(u, v);
}
}
for (const auto q : lqs[u]) {
lvert[q] = dsc.find(S[q]);
}
}
const auto [rord, rrange] = asc.build(N - 1);
const auto [lord, lrange] = dsc.build(0);
Vec<int> linv(N);
for (int i = 0; i < N; ++i) {
linv[lord[i]] = i;
}
Vec<Vec<int>> sub(N), add(N);
for (int i = 0; i < Q; ++i) {
const auto [l, r] = rrange[rvert[i]];
sub[l].push_back(i);
add[r - 1].push_back(i);
}
Fenwick fen(N);
Vec<int> ret(Q);
for (int i = 0; i < N; ++i) {
for (const auto q : sub[i]) {
const auto [u, d] = lrange[lvert[q]];
ret[q] -= fen.fold(u, d);
}
fen.add(linv[rord[i]], 1);
for (const auto q : add[i]) {
const auto [u, d] = lrange[lvert[q]];
ret[q] += fen.fold(u, d);
}
}
for (auto& x : ret) {
if (x > 0) {
x = 1;
}
}
return ret;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
332 KB |
Output is correct |
2 |
Correct |
1 ms |
268 KB |
Output is correct |
3 |
Correct |
1 ms |
204 KB |
Output is correct |
4 |
Correct |
1 ms |
204 KB |
Output is correct |
5 |
Correct |
1 ms |
332 KB |
Output is correct |
6 |
Correct |
1 ms |
332 KB |
Output is correct |
7 |
Correct |
1 ms |
332 KB |
Output is correct |
8 |
Correct |
1 ms |
288 KB |
Output is correct |
9 |
Correct |
1 ms |
204 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
332 KB |
Output is correct |
2 |
Correct |
1 ms |
268 KB |
Output is correct |
3 |
Correct |
1 ms |
204 KB |
Output is correct |
4 |
Correct |
1 ms |
204 KB |
Output is correct |
5 |
Correct |
1 ms |
332 KB |
Output is correct |
6 |
Correct |
1 ms |
332 KB |
Output is correct |
7 |
Correct |
1 ms |
332 KB |
Output is correct |
8 |
Correct |
1 ms |
288 KB |
Output is correct |
9 |
Correct |
1 ms |
204 KB |
Output is correct |
10 |
Correct |
6 ms |
1584 KB |
Output is correct |
11 |
Correct |
6 ms |
1484 KB |
Output is correct |
12 |
Correct |
6 ms |
1484 KB |
Output is correct |
13 |
Correct |
8 ms |
1612 KB |
Output is correct |
14 |
Correct |
6 ms |
1612 KB |
Output is correct |
15 |
Correct |
7 ms |
1668 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
926 ms |
78572 KB |
Output is correct |
2 |
Correct |
763 ms |
87536 KB |
Output is correct |
3 |
Correct |
704 ms |
85444 KB |
Output is correct |
4 |
Correct |
785 ms |
84844 KB |
Output is correct |
5 |
Correct |
804 ms |
85024 KB |
Output is correct |
6 |
Correct |
708 ms |
86212 KB |
Output is correct |
7 |
Correct |
594 ms |
82980 KB |
Output is correct |
8 |
Correct |
665 ms |
87492 KB |
Output is correct |
9 |
Correct |
605 ms |
84664 KB |
Output is correct |
10 |
Correct |
553 ms |
82888 KB |
Output is correct |
11 |
Correct |
610 ms |
83456 KB |
Output is correct |
12 |
Correct |
652 ms |
84156 KB |
Output is correct |
13 |
Correct |
832 ms |
92724 KB |
Output is correct |
14 |
Correct |
729 ms |
93004 KB |
Output is correct |
15 |
Correct |
671 ms |
92692 KB |
Output is correct |
16 |
Correct |
644 ms |
92640 KB |
Output is correct |
17 |
Correct |
558 ms |
82992 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
332 KB |
Output is correct |
2 |
Correct |
1 ms |
268 KB |
Output is correct |
3 |
Correct |
1 ms |
204 KB |
Output is correct |
4 |
Correct |
1 ms |
204 KB |
Output is correct |
5 |
Correct |
1 ms |
332 KB |
Output is correct |
6 |
Correct |
1 ms |
332 KB |
Output is correct |
7 |
Correct |
1 ms |
332 KB |
Output is correct |
8 |
Correct |
1 ms |
288 KB |
Output is correct |
9 |
Correct |
1 ms |
204 KB |
Output is correct |
10 |
Correct |
6 ms |
1584 KB |
Output is correct |
11 |
Correct |
6 ms |
1484 KB |
Output is correct |
12 |
Correct |
6 ms |
1484 KB |
Output is correct |
13 |
Correct |
8 ms |
1612 KB |
Output is correct |
14 |
Correct |
6 ms |
1612 KB |
Output is correct |
15 |
Correct |
7 ms |
1668 KB |
Output is correct |
16 |
Correct |
926 ms |
78572 KB |
Output is correct |
17 |
Correct |
763 ms |
87536 KB |
Output is correct |
18 |
Correct |
704 ms |
85444 KB |
Output is correct |
19 |
Correct |
785 ms |
84844 KB |
Output is correct |
20 |
Correct |
804 ms |
85024 KB |
Output is correct |
21 |
Correct |
708 ms |
86212 KB |
Output is correct |
22 |
Correct |
594 ms |
82980 KB |
Output is correct |
23 |
Correct |
665 ms |
87492 KB |
Output is correct |
24 |
Correct |
605 ms |
84664 KB |
Output is correct |
25 |
Correct |
553 ms |
82888 KB |
Output is correct |
26 |
Correct |
610 ms |
83456 KB |
Output is correct |
27 |
Correct |
652 ms |
84156 KB |
Output is correct |
28 |
Correct |
832 ms |
92724 KB |
Output is correct |
29 |
Correct |
729 ms |
93004 KB |
Output is correct |
30 |
Correct |
671 ms |
92692 KB |
Output is correct |
31 |
Correct |
644 ms |
92640 KB |
Output is correct |
32 |
Correct |
558 ms |
82992 KB |
Output is correct |
33 |
Correct |
888 ms |
87208 KB |
Output is correct |
34 |
Correct |
321 ms |
37136 KB |
Output is correct |
35 |
Correct |
775 ms |
89200 KB |
Output is correct |
36 |
Correct |
745 ms |
87392 KB |
Output is correct |
37 |
Correct |
862 ms |
88620 KB |
Output is correct |
38 |
Correct |
824 ms |
87872 KB |
Output is correct |
39 |
Correct |
758 ms |
92908 KB |
Output is correct |
40 |
Correct |
739 ms |
92780 KB |
Output is correct |
41 |
Correct |
721 ms |
85860 KB |
Output is correct |
42 |
Correct |
622 ms |
83596 KB |
Output is correct |
43 |
Correct |
848 ms |
92612 KB |
Output is correct |
44 |
Correct |
745 ms |
86624 KB |
Output is correct |
45 |
Correct |
722 ms |
92956 KB |
Output is correct |
46 |
Correct |
675 ms |
92816 KB |
Output is correct |
47 |
Correct |
712 ms |
92972 KB |
Output is correct |
48 |
Correct |
754 ms |
92664 KB |
Output is correct |
49 |
Correct |
757 ms |
92764 KB |
Output is correct |
50 |
Correct |
694 ms |
92644 KB |
Output is correct |
51 |
Correct |
695 ms |
89792 KB |
Output is correct |
52 |
Correct |
720 ms |
89868 KB |
Output is correct |