Submission #42204

# Submission time Handle Problem Language Result Execution time Memory
42204 2018-02-23T07:05:24 Z Aidyn_A Palindromes (APIO14_palindrome) C++14
100 / 100
949 ms 62224 KB
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")

#include <stdio.h>
#include <bits/stdc++.h>			
 
#define pb push_back
#define pf push_front
#define pp pop_back
#define sz(a) (int)(a.size())
#define mp make_pair
#define F first
#define S second
#define next _next
#define prev _prev
#define left _left
#define right _right
#define y1 _y1
#define all(x) x.begin(), x.end()
#define what_is(x) #x << " is " << (x)
 
using namespace std;
 
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
 
const int N = (int)3e5 + 123;
 
inline int mult(int a, int b, int MOD) {
	return 1ll * a * b % MOD;
}
 
inline int add(int a, int b, int MOD) {
	a += b;
	if(a >= MOD) a -= MOD;
	return a;
}  
 
inline int subs(int a, int b, int MOD) {
	a -= b;
	if(a < 0) a += MOD;
	return a;
}
 
string s;
int h[3][N], P[3], pw[3][N], MOD[3];
int hr[3][N];
   
void build() {
	h[1][0] = h[2][0] = s[0];
	hr[1][0] = hr[2][0] = s[sz(s) - 1];
	for(int it = 1; it <= 2; it ++) {
		for(int i = 1; i < sz(s); i ++) {
			h[it][i] = add(mult(h[it][i - 1], P[it], MOD[it]), s[i], MOD[it]); 
			hr[it][i] = add(mult(hr[it][i - 1], P[it], MOD[it]), s[sz(s) - i - 1], MOD[it]);
		}
	}
}                      
 
inline ll hashPair(pii A) {
	return ((ll)A.F << 16) ^ ((ll)A.S >> 16);
}

inline ll getHash(int l, int r) {
	int A = subs(h[1][r], mult(h[1][l - 1], pw[1][r - l + 1], MOD[1]), MOD[1]);
	int B = subs(h[2][r], mult(h[2][l - 1], pw[2][r - l + 1], MOD[2]), MOD[2]);
	return hashPair(mp(A, B));
}
 
inline ll getHashR(int l, int r) {
	int l1 = sz(s) - r - 1, r1 = sz(s) - l - 1;
	l = l1, r = r1;
	int A = subs(hr[1][r], mult(hr[1][l - 1], pw[1][r - l + 1], MOD[1]), MOD[1]);
	int B = subs(hr[2][r], mult(hr[2][l - 1], pw[2][r - l + 1], MOD[2]), MOD[2]);
	return hashPair(mp(A, B));
}
                             
inline int length(int i, int j) {
	if(s[i] != s[j])
		return 0;
	int l = 0, r = min(i, sz(s) - j) + 1;
	while(r - l > 1) {
		int mid = (l + r) >> 1;
		if(i - mid >= 0 && j + mid < sz(s) && getHash(i - mid, i) == getHashR(j, j + mid))
			l = mid;
		else 	
			r = mid;
	}
	return l;              	
}
 
unordered_map<ll, int> newId;
int vtr;
vector<int> g[N];
int chest[N], dlina[N];
int pr[N];
  
int sub[N];
ll res;
 
void dfs(int x) {
	sub[x] += chest[x];
	for(auto to : g[x]) {
		dfs(to);
		sub[x] += sub[to];
	}
	res = max(res, 1ll * sub[x] * dlina[x]);	
}
 
void calc(bool op) {
	for(int i = op; i < sz(s); i ++) {
		if(s[i - op] != s[i])
			continue;
		int tmp = length(i - op, i), bmp = tmp;
		int prev = -1;
		while(tmp >= 0) {
		  if(!newId.count(getHash(i - tmp - op, i + tmp))) {
		  	newId[getHash(i - tmp - op, i + tmp)] = ++ vtr;
		  	dlina[vtr] = ((tmp + op) << 1) + (op ^ 1);
		  	if(prev != -1) {
		  		g[vtr].pb(prev);
		  		pr[prev] = vtr;
		  	}
		  	prev = vtr;
		  } else { 
		  	if(prev != -1) {
		  		int kepka = newId[getHash(i - tmp - op, i + tmp)]; 
		  		g[kepka].pb(prev);
		  		pr[prev] = kepka;
				}
		  	break;
      }
			tmp --;			
		}
		chest[newId[getHash(i - bmp - op, i + bmp)]] ++;
	}
}
 
int main() {
	P[1] = 31, P[2] = 97;
	MOD[1] = (int)1e9 + 7, MOD[2] = (int)1e9 + 3;
	for(int it = 1; it <= 2; it ++) {
		pw[it][0] = 1;
		for(int i = 1; i <= N - 123; i ++)
			pw[it][i] = mult(pw[it][i - 1], P[it], MOD[it]); 
	}
	ios_base::sync_with_stdio(0);  cin.tie(0);
	cin >> s;
  newId.max_load_factor(0.25);
  newId.reserve(sz(s) << 1);
	build();
	calc(0); 
	calc(1);
	for(int i = 1; i <= vtr; i ++) { 
 	  if(pr[i]) continue;
		dfs(i);
	}
	cout << res;
	return 0;  
}
# Verdict Execution time Memory Grader output
1 Correct 13 ms 9720 KB Output is correct
2 Correct 13 ms 9952 KB Output is correct
3 Correct 13 ms 9952 KB Output is correct
4 Correct 13 ms 10092 KB Output is correct
5 Correct 13 ms 10092 KB Output is correct
6 Correct 12 ms 10092 KB Output is correct
7 Correct 12 ms 10092 KB Output is correct
8 Correct 13 ms 10092 KB Output is correct
9 Correct 13 ms 10092 KB Output is correct
10 Correct 13 ms 10092 KB Output is correct
11 Correct 13 ms 10092 KB Output is correct
12 Correct 12 ms 10092 KB Output is correct
13 Correct 13 ms 10092 KB Output is correct
14 Correct 13 ms 10092 KB Output is correct
15 Correct 13 ms 10092 KB Output is correct
16 Correct 13 ms 10092 KB Output is correct
17 Correct 13 ms 10092 KB Output is correct
18 Correct 13 ms 10092 KB Output is correct
19 Correct 13 ms 10092 KB Output is correct
20 Correct 13 ms 10092 KB Output is correct
21 Correct 13 ms 10092 KB Output is correct
22 Correct 13 ms 10092 KB Output is correct
23 Correct 13 ms 10092 KB Output is correct
24 Correct 13 ms 10092 KB Output is correct
25 Correct 13 ms 10092 KB Output is correct
26 Correct 13 ms 10092 KB Output is correct
27 Correct 14 ms 10092 KB Output is correct
28 Correct 14 ms 10092 KB Output is correct
29 Correct 13 ms 10092 KB Output is correct
30 Correct 14 ms 10092 KB Output is correct
31 Correct 13 ms 10092 KB Output is correct
32 Correct 13 ms 10096 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 10220 KB Output is correct
2 Correct 14 ms 10220 KB Output is correct
3 Correct 15 ms 10220 KB Output is correct
4 Correct 14 ms 10220 KB Output is correct
5 Correct 14 ms 10220 KB Output is correct
6 Correct 14 ms 10220 KB Output is correct
7 Correct 13 ms 10220 KB Output is correct
8 Correct 14 ms 10220 KB Output is correct
9 Correct 13 ms 10220 KB Output is correct
10 Correct 13 ms 10220 KB Output is correct
11 Correct 14 ms 10220 KB Output is correct
12 Correct 14 ms 10220 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 26 ms 11756 KB Output is correct
2 Correct 25 ms 11756 KB Output is correct
3 Correct 32 ms 11756 KB Output is correct
4 Correct 33 ms 11756 KB Output is correct
5 Correct 24 ms 11756 KB Output is correct
6 Correct 26 ms 11756 KB Output is correct
7 Correct 25 ms 11756 KB Output is correct
8 Correct 22 ms 11756 KB Output is correct
9 Correct 22 ms 11756 KB Output is correct
10 Correct 26 ms 11756 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 184 ms 27500 KB Output is correct
2 Correct 180 ms 27500 KB Output is correct
3 Correct 290 ms 27500 KB Output is correct
4 Correct 304 ms 27500 KB Output is correct
5 Correct 161 ms 27500 KB Output is correct
6 Correct 158 ms 27500 KB Output is correct
7 Correct 219 ms 27500 KB Output is correct
8 Correct 129 ms 27500 KB Output is correct
9 Correct 163 ms 27500 KB Output is correct
10 Correct 185 ms 27500 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 588 ms 62224 KB Output is correct
2 Correct 576 ms 62224 KB Output is correct
3 Correct 947 ms 62224 KB Output is correct
4 Correct 949 ms 62224 KB Output is correct
5 Correct 521 ms 62224 KB Output is correct
6 Correct 643 ms 62224 KB Output is correct
7 Correct 716 ms 62224 KB Output is correct
8 Correct 404 ms 62224 KB Output is correct
9 Correct 403 ms 62224 KB Output is correct
10 Correct 584 ms 62224 KB Output is correct
11 Correct 611 ms 62224 KB Output is correct
12 Correct 432 ms 62224 KB Output is correct