#include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmin(T& _old, T _new) { return _old > _new && (_old = _new, true); }
template <class T>
bool chmax(T& _old, T _new) { return _old < _new && (_old = _new, true); }
template <typename T>
struct point2D {
T x, y;
point2D() : x(0), y(0) {}
point2D(T _x, T _y) : x(_x), y(_y) {}
template <typename U>
explicit point2D(const point2D<U>& p) : x(p.x), y(p.y) {}
using P = point2D;
bool operator<(const P& p) const { return tie(x, y) < tie(p.x, p.y); }
bool operator==(const P& p) const { return tie(x, y) == tie(p.x, p.y); }
bool operator!=(const P& p) const { return tie(x, y) != tie(p.x, p.y); }
friend P operator+(const P& a, const P& b) { return P(a.x + b.x, a.y + b.y); }
friend P operator-(const P& a, const P& b) { return P(a.x - b.x, a.y - b.y); }
friend P operator*(const P& a, const T& scala) { return P(a.x * scala, a.y * scala); }
friend P operator*(const T& scala, const P& a) { return P(scala * a.x, scala * a.y); }
friend P operator/(const P& a, const T& scala) { return P(a.x / scala, a.y / scala); }
friend ostream& operator<<(ostream& o, const P& p) { return o << '(' << p.x << ", " << p.y << ')'; }
friend istream& operator>>(istream& i, P& p) { return i >> p.x >> p.y; }
T dot(const P& p) const { return x * p.x + y * p.y; }
T cross(const P& p) const { return x * p.y - y * p.x; }
T cross(const P& a, const P& b) const { return (a - *this).cross(b - *this); }
T dist2() const { return x * x + y * y; }
double dist() const { return sqrt(dist2()); }
P conj() const { return P(x, -y); }
P perp_cw() const { return P(y, -x); }
P perp_ccw() const { return P(-y, x); }
P unit() const { return *this / dist(); }
P normal() const { return perp_ccw().unit(); }
P unit_int() const { return x || y ? *this / gcd(x, y) : *this; }
P normal_int() const { return perp_ccw().unit_int(); }
bool same_dir(const P& p) const { return cross(p) == 0 && dot(p) > 0; }
bool on_segment(const P& s, const P& e) const {
if constexpr (is_integral_v<T>)
return cross(s, e) == 0 && (s - *this).dot(e - *this) <= 0;
else
return cross(s, e) == 0 && (s - *this).dot(e - *this) <= 1e-6;
}
int side_of(const P& s, const P& e) const {
if constexpr (is_integral_v<T>) {
auto c = s.cross(e, *this);
return (c > 0) - (c < 0);
} else {
auto a = (e - s).cross(*this - s);
double l = (e - s).dist() * 1e-6;
return (a > l) - (a < -l);
}
}
double angle() const { return atan2(y, x); }
P rotate(double radian) const {
return P(x * cos(radian) - y * sin(radian), x * sin(radian) + y * cos(radian));
}
};
template <typename T>
double hull_diameter(const vector<point2D<T>>& hull) {
T diameter = 0;
int n = hull.size();
for (int i = 0, j = n > 1; i < j; ++i) {
for (;; j = j == n - 1 ? 0 : j + 1) {
chmax(diameter, (hull[i] - hull[j]).dist2());
if ((hull[(j + 1) % n] - hull[j]).cross(hull[i + 1] - hull[i]) >= 0)
break;
}
}
return sqrt(diameter);
}
template <class P = point2D<double>>
P segment_inter(const pair<P, P>& l1, const pair<P, P>& l2) {
auto& [a, b] = l1;
auto& [c, d] = l2;
auto oa = c.cross(d, a), ob = c.cross(d, b);
return (a * c.cross(d, b) - b * c.cross(d, a)) / (ob - oa);
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
#ifdef palilo
freopen("in", "r", stdin);
freopen("out", "w", stdout);
#endif
using point = point2D<double>;
int n;
cin >> n;
vector<point> a(n);
for (auto& x : a) cin >> x;
// precomputed values
vector<point> perp_units(n);
for (int i = 0; i < n - 1; ++i)
perp_units[i] = (a[i + 1] - a[i]).perp_ccw().unit();
perp_units[n - 1] = (a[0] - a[n - 1]).perp_ccw().unit();
vector<pair<point, point>> edges;
vector<point> mini_hull;
edges.reserve(n), mini_hull.reserve(n);
auto ok = [&](double R) -> bool {
edges.clear();
for (int i = 0; i < n; ++i) {
pair cur = {a[i] + perp_units[i] * R, a[i == n - 1 ? 0 : i + 1] + perp_units[i] * R};
// prev edge is outside the polygon
while (!edges.empty() && edges.back().first.side_of(cur.first, cur.second) == -1)
edges.pop_back();
// prev edge is intersected
if (!edges.empty()) {
point inter = segment_inter(edges.back(), cur);
cur.first = edges.back().second = inter;
}
edges.emplace_back(cur);
}
while (edges.size() > 1 && edges.back().first.side_of(edges.front().first, edges.front().second) == -1)
edges.pop_back();
if (edges.size() > 1) {
point inter = segment_inter(edges.back(), edges.front());
edges.front().first = edges.back().second = inter;
}
mini_hull.clear();
for (const auto& [p, _] : edges) {
if (!mini_hull.empty() && (p - mini_hull.back()).dist2() < 1e-6) continue;
mini_hull.emplace_back(p);
}
if (mini_hull.size() > 1 && (mini_hull.front() - mini_hull.back()).dist2() < 1e-6)
mini_hull.pop_back();
return hull_diameter(mini_hull) >= 2 * R;
};
double lo = 0, hi = hull_diameter(a) / 4;
while (hi - lo > 1e-4) {
double mid = (lo + hi) / 2;
(ok(mid) ? lo : hi) = mid;
}
cout << fixed << setprecision(3)
<< lo;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
204 KB |
Output is correct |
2 |
Incorrect |
1 ms |
204 KB |
Output isn't correct |
3 |
Correct |
1 ms |
204 KB |
Output is correct |
4 |
Correct |
1 ms |
332 KB |
Output is correct |
5 |
Incorrect |
5 ms |
460 KB |
Output isn't correct |
6 |
Incorrect |
20 ms |
1192 KB |
Output isn't correct |
7 |
Incorrect |
25 ms |
1292 KB |
Output isn't correct |
8 |
Incorrect |
30 ms |
1356 KB |
Output isn't correct |
9 |
Incorrect |
61 ms |
2628 KB |
Output isn't correct |
10 |
Incorrect |
105 ms |
3784 KB |
Output isn't correct |