#include <bits/stdc++.h>
using namespace std;
// macros
typedef long long ll;
typedef long double ld;
typedef pair<int, int> ii;
typedef pair<ll, ll> lll;
typedef tuple<int, int, int> iii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vll;
typedef vector<lll> vlll;
#define REP(a,b,c) for(int a=int(b); a<int(c); a++)
#define RE(a,c) REP(a,0,c)
#define RE1(a,c) REP(a,1,c+1)
#define REI(a,b,c) REP(a,b,c+1)
#define REV(a,b,c) for(int a=int(c-1); a>=int(b); a--)
#define FOR(a,b) for(auto& a : b)
#define all(a) a.begin(), a.end()
#define INF 1e18
#define EPS 1e-9
#define pb push_back
#define popb pop_back
#define fi first
#define se second
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
// input
template<class T> void IN(T& x) {cin >> x;}
template<class H, class... T> void IN(H& h, T&... t) {IN(h); IN(t...); }
// output
template<class T1, class T2> void OUT(const pair<T1,T2>& x);
template<class T> void OUT(const vector<T>& x);
template<class T> void OUT(const T& x) {cout << x;}
template<class H, class... T> void OUT(const H& h, const T&... t) {OUT(h); OUT(t...); }
template<class T1, class T2> void OUT(const pair<T1,T2>& x) {OUT(x.fi,' ',x.se);}
template<class T> void OUT(const vector<T>& x) {RE(i,x.size()) OUT(i==0?"":" ",x[i]);}
template<class... T> void OUTL(const T&... t) {OUT(t..., "\n"); }
template<class H> void OUTLS(const H& h) {OUTL(h); }
template<class H, class... T> void OUTLS(const H& h, const T&... t) {OUT(h,' '); OUTLS(t...); }
// dp
template<class T> bool ckmin(T&a, T&b) { bool bl = a > b; a = min(a,b); return bl;}
template<class T> bool ckmax(T&a, T&b) { bool bl = a < b; a = max(a,b); return bl;}
void program();
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
program();
}
// mod library
ll MOD=1e9+7;
inline ll mod(ll x_) {
return (x_)%MOD;
}
ll modpow(ll x_, ll N_) {
if(N_ == 0) return 1;
ll a = modpow(x_,N_/2);
a = (a*a)%MOD;
if(N_%2) a = (a*x_)%MOD;
return a;
}
ll inv(ll x_) {
return modpow(x_, MOD-2);
}
class mi {
public:
mi(ll v=0) {value = v;}
mi operator+ (ll rs) {return mod(value+rs);}
mi operator- (ll rs) {return mod(value-rs+MOD);}
mi operator* (ll rs) {return mod(value*rs);}
mi operator/ (ll rs) {return mod(value*inv(rs));}
mi& operator+=(ll rs) {*this = (*this)+rs; return *this;}
mi& operator-=(ll rs) {*this = (*this)-rs; return *this;}
mi& operator*=(ll rs) {*this = (*this)*rs; return *this;}
mi& operator/=(ll rs) {*this = (*this)/rs; return *this;}
operator ll&() {return value;}
ll value;
};
typedef vector<mi> vmi;
//===================//
// begin program //
//===================//
const int MX = 5e5;
const int N = (1<<20);
int n, a[MX];
int m, b[MX];
int lis[MX];
// fenwick tree
int FT[MX];
void addFT(int i, int value) {
for(i++; i<=n; i+=i&-i) FT[i] = max(FT[i],value);
}
int getFT(int i) {
int ans = 0;
for(i++; i; i-=i&-i) ans = max(ans,FT[i]);
return ans;
}
void addSM(int i, mi value) {
for(i++; i<MX; i+=i&-i) FT[i] = (mi)FT[i] + value;
}
mi getSM(int i) {
mi ans = 0;
for(i++; i; i-=i&-i) ans += (mi)FT[i];
return ans;
}
vi layer[MX];
int c[MX], dpi[MX], dpe[MX];
void program() {
IN(n);
RE(i,n) IN(a[i]);
REV(i,1,n) b[m++] = a[i];
RE(i,n) b[m++] = a[i];
// fill c
RE(i,m) c[i] = 1;
c[m/2] = mi(1)/mi(2);
// coördinate compression
vi difa;
RE(i,n) difa.pb(a[i]);
sort(all(difa));
RE(i,n) a[i] = lower_bound(all(difa),a[i]) - difa.begin();
RE(i,m) b[i] = lower_bound(all(difa),b[i]) - difa.begin();
// finding lis
RE(i,m) {
lis[i] = getFT(b[i]-1)+1;
addFT(b[i],lis[i]);
}
RE(i,m) layer[lis[i]].pb(i);
RE(i,MX) FT[i] = 0;
RE1(i,n) {
vi pq;
FOR(j,layer[i-1])
pq.pb(j);
FOR(j,layer[i])
pq.pb(j);
sort(all(pq));
FOR(j,pq) {
if(lis[j] == i) {
dpe[j] = (mi)c[j]*getSM(b[j]-1);
if(i == 1) dpe[j] = c[j];
if(j == m/2) {
dpi[j] = dpe[j];
dpe[j] = 0;
}
} else {
addSM(b[j],dpe[j]);
}
}
FOR(j,layer[i-1]) addSM(b[j],-dpe[j]);
}
RE1(i,n) {
vi pq;
FOR(j,layer[i-1])
pq.pb(j);
FOR(j,layer[i])
pq.pb(j);
sort(all(pq));
FOR(j,pq) {
if(lis[j] == i) {
if(j == m/2) continue;
dpi[j] = (mi)c[j]*getSM(b[j]-1);
} else {
addSM(b[j],dpi[j]);
}
}
FOR(j,layer[i-1]) addSM(b[j],-dpi[j]);
}
int ans=0;
RE(i,m) ans = max(ans,lis[i]);
mi res1=0;
RE(i,m) if(lis[i] == ans) res1 += (mi)dpi[i];
res1 *= modpow(2,n-ans+1);
mi res2=0;
RE(i,m) if(lis[i] == ans) res2 += (mi)dpe[i];
res2 *= modpow(2,n-ans-1);
res1 += res2;
OUTLS(ans,(ll)res1);
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
11 ms |
14028 KB |
Output is correct |
2 |
Correct |
11 ms |
14052 KB |
Output is correct |
3 |
Correct |
11 ms |
14028 KB |
Output is correct |
4 |
Correct |
11 ms |
14028 KB |
Output is correct |
5 |
Correct |
11 ms |
14056 KB |
Output is correct |
6 |
Correct |
11 ms |
13944 KB |
Output is correct |
7 |
Correct |
12 ms |
14076 KB |
Output is correct |
8 |
Correct |
12 ms |
14028 KB |
Output is correct |
9 |
Correct |
12 ms |
14028 KB |
Output is correct |
10 |
Correct |
12 ms |
14028 KB |
Output is correct |
11 |
Correct |
283 ms |
25292 KB |
Output is correct |
12 |
Correct |
239 ms |
23736 KB |
Output is correct |
13 |
Correct |
212 ms |
23292 KB |
Output is correct |
14 |
Correct |
294 ms |
22152 KB |
Output is correct |
15 |
Correct |
381 ms |
23940 KB |
Output is correct |
16 |
Correct |
437 ms |
25480 KB |
Output is correct |
17 |
Correct |
349 ms |
27160 KB |
Output is correct |
18 |
Correct |
347 ms |
27180 KB |
Output is correct |
19 |
Correct |
375 ms |
27072 KB |
Output is correct |
20 |
Correct |
365 ms |
27212 KB |
Output is correct |