Submission #414596

# Submission time Handle Problem Language Result Execution time Memory
414596 2021-05-30T17:37:30 Z dolphingarlic Simurgh (IOI17_simurgh) C++14
32 / 100
226 ms 6672 KB
#include "simurgh.h"

#include <bits/stdc++.h>
using namespace std;

int n, m, u[124750], v[124750];
vector<pair<int, int>> graph[500];
int tin[500], low[500], timer = 0, deg[500], cmp[500];
bool visited[500], known[124750], is_golden[124750];
pair<int, int> back_edge[500], par[500];
vector<int> dfs_tree;

void dfs(int node = 0, int parent = -1) {
	visited[node] = true;
	tin[node] = low[node] = timer++;
	for (pair<int, int> i : graph[node]) if (i.first != parent) {
		if (visited[i.first]) {
			low[node] = min(low[node], tin[i.first]);
			if (tin[node] > tin[i.first]) back_edge[node] = i;
		} else {
			dfs(i.first, node);
			low[node] = min(low[node], low[i.first]);
			if (low[i.first] > tin[node])
				known[i.second] = is_golden[i.second] = true;
			dfs_tree.push_back(i.second);
			par[i.first] = {node, i.second};
		}
	}
}

int find(int A) { return cmp[A] = (A == cmp[A] ? A : find(cmp[A])); }
void onion(int A, int B) { cmp[find(A)] = find(B); }

int query_forest(vector<int> forest) {
	iota(cmp, cmp + n, 0);
	for (int i : forest) onion(u[i], v[i]);
	int delta = 0;
	for (int i : dfs_tree) if (find(u[i]) != find(v[i])) {
		delta -= is_golden[i];
		forest.push_back(i);
		onion(u[i], v[i]);
	}
	return count_common_roads(forest) + delta;
}

vector<int> find_roads(int _n, vector<int> _u, vector<int> _v) {
	n = _n, m = _u.size();
	for (int i = 0; i < m; i++) {
		u[i] = _u[i], v[i] = _v[i];
		graph[u[i]].push_back({v[i], i});
		graph[v[i]].push_back({u[i], i});
	}
	// First, we find the status of all edges in the DFS tree
	fill_n(back_edge, n, make_pair(-1, -1));
	dfs();
	int dfs_tree_common = count_common_roads(dfs_tree);
	for (int i = 0; i < n; i++) if (~back_edge[i].first) {
		int curr = i;
		bool single_known = false;
		vector<int> unknown;
		while (curr != back_edge[i].first) {
			if (!known[par[curr].second])
				unknown.push_back(par[curr].second);
			else if (!single_known) {
				single_known = true;
				unknown.push_back(par[curr].second);
			}
			curr = par[curr].first;
		}
		if (unknown.size() == 1) continue;
		
		vector<int> query_res;
		for (int j : unknown) {
			vector<int> to_query = {back_edge[i].second};
			for (int k : dfs_tree) if (k != j) to_query.push_back(k);
			query_res.push_back(count_common_roads(to_query));
		}

		int mx = max(dfs_tree_common, *max_element(query_res.begin(), query_res.end()));
		for (int i = 0; i < unknown.size(); i++) {
			known[unknown[i]] = true;
			is_golden[unknown[i]] = (query_res[i] != mx);
		}
	}
	// Next, we get the "degree" of each node in the golden tree
	queue<int> q;
	for (int i = 0; i < n; i++) {
		vector<int> to_query;
		for (pair<int, int> j : graph[i]) to_query.push_back(j.second);
		deg[i] = query_forest(to_query);
		if (deg[i] == 1) q.push(i);
	}
	// Finally, binary search for the "parent" of each node
	while (q.size()) {
		int curr = q.front();
		q.pop();
		if (deg[curr] != 1) continue;
		int l = 0, r = graph[curr].size() - 1;
		while (l != r) {
			int mid = (l + r) / 2;
			vector<int> to_query;
			for (int i = l; i <= mid; i++) to_query.push_back(graph[curr][i].second);
			if (query_forest(to_query)) r = mid;
			else l = mid + 1;
		}
		int nxt, id;
		tie(nxt, id) = graph[curr][l];
		is_golden[id] = true;
		deg[nxt]--;
		if (deg[nxt] == 1) q.push(nxt);
		vector<pair<int, int>> tmp;
		for (pair<int, int> i : graph[nxt]) if (i.second != id) tmp.push_back(i);
		graph[nxt] = tmp;
	}
	// Return the answer
	vector<int> ans;
	for (int i = 0; i < m; i++) if (is_golden[i]) ans.push_back(i);
	return ans;
}

Compilation message

simurgh.cpp: In function 'std::vector<int> find_roads(int, std::vector<int>, std::vector<int>)':
simurgh.cpp:80:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   80 |   for (int i = 0; i < unknown.size(); i++) {
      |                   ~~^~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB correct
2 Correct 1 ms 332 KB correct
3 Correct 1 ms 332 KB correct
4 Correct 1 ms 332 KB correct
5 Correct 1 ms 332 KB correct
6 Correct 1 ms 332 KB correct
7 Correct 1 ms 332 KB correct
8 Correct 1 ms 332 KB correct
9 Correct 1 ms 332 KB correct
10 Correct 1 ms 316 KB correct
11 Correct 1 ms 332 KB correct
12 Correct 1 ms 332 KB correct
13 Correct 1 ms 332 KB correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB correct
2 Correct 1 ms 332 KB correct
3 Correct 1 ms 332 KB correct
4 Correct 1 ms 332 KB correct
5 Correct 1 ms 332 KB correct
6 Correct 1 ms 332 KB correct
7 Correct 1 ms 332 KB correct
8 Correct 1 ms 332 KB correct
9 Correct 1 ms 332 KB correct
10 Correct 1 ms 316 KB correct
11 Correct 1 ms 332 KB correct
12 Correct 1 ms 332 KB correct
13 Correct 1 ms 332 KB correct
14 Correct 2 ms 324 KB correct
15 Correct 2 ms 332 KB correct
16 Correct 2 ms 332 KB correct
17 Correct 2 ms 332 KB correct
18 Correct 2 ms 332 KB correct
19 Correct 2 ms 320 KB correct
20 Correct 2 ms 332 KB correct
21 Correct 2 ms 332 KB correct
22 Correct 2 ms 324 KB correct
23 Correct 2 ms 332 KB correct
24 Correct 2 ms 320 KB correct
25 Correct 1 ms 332 KB correct
26 Incorrect 1 ms 332 KB WA in grader: NO
27 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB correct
2 Correct 1 ms 332 KB correct
3 Correct 1 ms 332 KB correct
4 Correct 1 ms 332 KB correct
5 Correct 1 ms 332 KB correct
6 Correct 1 ms 332 KB correct
7 Correct 1 ms 332 KB correct
8 Correct 1 ms 332 KB correct
9 Correct 1 ms 332 KB correct
10 Correct 1 ms 316 KB correct
11 Correct 1 ms 332 KB correct
12 Correct 1 ms 332 KB correct
13 Correct 1 ms 332 KB correct
14 Correct 2 ms 324 KB correct
15 Correct 2 ms 332 KB correct
16 Correct 2 ms 332 KB correct
17 Correct 2 ms 332 KB correct
18 Correct 2 ms 332 KB correct
19 Correct 2 ms 320 KB correct
20 Correct 2 ms 332 KB correct
21 Correct 2 ms 332 KB correct
22 Correct 2 ms 324 KB correct
23 Correct 2 ms 332 KB correct
24 Correct 2 ms 320 KB correct
25 Correct 1 ms 332 KB correct
26 Incorrect 1 ms 332 KB WA in grader: NO
27 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB correct
2 Correct 1 ms 332 KB correct
3 Correct 126 ms 4588 KB correct
4 Correct 204 ms 6328 KB correct
5 Correct 224 ms 6340 KB correct
6 Correct 202 ms 6152 KB correct
7 Correct 197 ms 6596 KB correct
8 Correct 204 ms 6660 KB correct
9 Correct 198 ms 6596 KB correct
10 Correct 210 ms 6568 KB correct
11 Correct 210 ms 6596 KB correct
12 Correct 226 ms 6664 KB correct
13 Correct 1 ms 332 KB correct
14 Correct 207 ms 6652 KB correct
15 Correct 218 ms 6672 KB correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB correct
2 Correct 1 ms 332 KB correct
3 Correct 1 ms 332 KB correct
4 Correct 1 ms 332 KB correct
5 Correct 1 ms 332 KB correct
6 Correct 1 ms 332 KB correct
7 Correct 1 ms 332 KB correct
8 Correct 1 ms 332 KB correct
9 Correct 1 ms 332 KB correct
10 Correct 1 ms 316 KB correct
11 Correct 1 ms 332 KB correct
12 Correct 1 ms 332 KB correct
13 Correct 1 ms 332 KB correct
14 Correct 2 ms 324 KB correct
15 Correct 2 ms 332 KB correct
16 Correct 2 ms 332 KB correct
17 Correct 2 ms 332 KB correct
18 Correct 2 ms 332 KB correct
19 Correct 2 ms 320 KB correct
20 Correct 2 ms 332 KB correct
21 Correct 2 ms 332 KB correct
22 Correct 2 ms 324 KB correct
23 Correct 2 ms 332 KB correct
24 Correct 2 ms 320 KB correct
25 Correct 1 ms 332 KB correct
26 Incorrect 1 ms 332 KB WA in grader: NO
27 Halted 0 ms 0 KB -