Submission #405614

# Submission time Handle Problem Language Result Execution time Memory
405614 2021-05-16T15:12:36 Z flappybird Unique Cities (JOI19_ho_t5) C++14
4 / 100
2000 ms 150184 KB
#include <bits/stdc++.h>
#include <unordered_map>
#pragma GCC optimize("O3")
using namespace std;
typedef long ll;
typedef pair<ll, ll> pll;
#define MAX 201010
#define MAXS 18
#define INF 1000000000000000001
#define bb ' '
#define ln '\n'
struct segtree {
	ll N;
	ll s;
	vector<ll> tree, l, r;
	void update(ll x, ll a) {
		x += s - 1;
		tree[x] = a;
		x /= 2;
		while (x) tree[x] = max(tree[x << 1], tree[(x << 1) + 1]), x >>= 1;
	}
	ll query(ll low, ll high, ll loc = 1) {
		if (l[loc] == low && r[loc] == high) return tree[loc];
		if (r[loc << 1] >= high) return query(low, high, loc << 1);
		if (l[(loc << 1) + 1] <= low) return query(low, high, (loc << 1) + 1);
		return max(query(low, r[loc << 1], loc << 1), query(l[(loc << 1) + 1], high, (loc << 1) + 1));
	}
	void init(ll x = 1) {
		if (x >= s) {
			l[x] = r[x] = x - s + 1;
			return;
		}
		init(x * 2);
		init(x * 2 + 1);
		l[x] = l[x << 1];
		r[x] = r[x * 2 + 1];
	}
	segtree(ll n) {
		N = n;
		s = (ll)1 << (ll)ceil(log2(N));
		tree.resize(2 * s + 1);
		l.resize(2 * s + 1);
		r.resize(2 * s + 1);
		init();
	}
};
vector<ll> adj[MAX], sav[MAX], savdis[MAX], rev[MAX];
ll dir[MAX], ddir[MAX], dddir[MAX];
vector<vector<ll>> chain;
vector<set<ll>> subtree, revtree;
vector<segtree> chainseg;
ll C[MAX], depth[MAX], mxdepv[MAX];
ll mxdep[MAX];
ll sp[MAX][MAXS];
ll cnt;
ll num[MAX];
pll cnum[MAX];
ll ans[MAX];
ll arr[MAX];
ll init(ll x, ll p = 0, ll d = 0) {
	sp[x][0] = p;
	ll i;
	for (i = 1; i < MAXS; i++) sp[x][i] = sp[sp[x][i - 1]][i - 1];
	depth[x] = d;
	ll sum = 1;
	sav[x].resize(adj[x].size());
	savdis[x].resize(adj[x].size());
	rev[x].resize(adj[x].size());
	for (auto v : adj[x]) {
		if (v == p) continue;
		sum += init(v, x, d + 1);
	}
	return num[x] = sum;
}
void calc(ll x, ll p = 0) {
	ll i;
	ll mx = 0;
	mxdepv[x] = x;
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		calc(adj[x][i], x);
		if (mx < depth[mxdepv[adj[x][i]]]) mx = depth[mxdepv[adj[x][i]]], mxdepv[x] = mxdepv[adj[x][i]];
		sav[x][i] = mxdepv[adj[x][i]];
		savdis[x][i] = depth[sav[x][i]] - depth[x];
	}
	ll cnt = 0;
	ll vv, vvv;
	vv = vvv = -1;
	ll nv = -1;
	ll nmx = 0;
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (depth[mxdepv[v]] == mx) cnt++, vvv = vv, vv = v;
		else if (depth[mxdepv[v]] > nmx) nmx = depth[mxdepv[v]], nv = v;
	}
	if (cnt >= 2) {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? vvv : vv);
			}
		}
	}
	else {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? nv : vv);
			}
		}
	}
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		if (rev[x][i] == -1) rev[x][i] = x;
		else rev[x][i] = mxdepv[rev[x][i]];
	}
}
void make_chain(ll x, ll p = 0) {
	ll mx, mv;
	mx = mv = 0;
	chain[cnt].push_back(x);
	cnum[x] = { cnt, chain[cnt].size() - 1 };
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (mx < num[v]) mx = num[v], mv = v;
	}
	if (mv) make_chain(mv, x);
	for (auto v : adj[x]) {
		if (v == p || v == mv) continue;
		cnt++;
		chain.push_back(vector<ll>());
		make_chain(v, x);
	}
}
void make_tree() {
	ll i;
	for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
}
void update(ll v, ll x) {
	chainseg[cnum[v].first].update(cnum[v].second + 1, x);
}
//1을 루트로 하는 LCA
ll lca(ll u, ll v) {
	if (depth[u] != depth[v]) {
		if (depth[u] < depth[v]) swap(u, v);
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (depth[sp[u][i]] >= depth[v]) u = sp[u][i];
	}
	if (u == v) return u;
	ll i;
	for (i = MAXS - 1; i >= 0; i--) if (sp[u][i] != sp[v][i]) u = sp[u][i], v = sp[v][i];
	return sp[v][0];
}
//HLD query
ll mxval(ll u, ll v) {
	ll ans = 0;
	ll l = lca(u, v);
	while (cnum[u].first != cnum[l].first) ans = max(ans, chainseg[cnum[u].first].query(1, cnum[u].second + 1)), u = sp[chain[cnum[u].first][0]][0];
	while (cnum[v].first != cnum[l].first) ans = max(ans, chainseg[cnum[v].first].query(1, cnum[v].second + 1)), v = sp[chain[cnum[v].first][0]][0];
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[u].second + 1));
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[v].second + 1));
	return ans;
}
//두 정점 사이 거리
ll dis(ll u, ll v) { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; }
ll dis(ll u, ll v, ll l) { return depth[u] + depth[v] - 2 * depth[l]; }
//r이 루트, v의 x번째 부모
ll prtx(ll r, ll v, ll x) {
	if (x == 0) return v;
	ll l = lca(r, v);
	ll rv = dis(r, v, l);
	if (rv < x) return 0;
	if (dis(l, v, l) < x) {
		ll d = rv - x;
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (d - (1 << i) >= 0) d -= (1 << i), r = sp[r][i];
		return r;
	}
	else {
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (x - (1 << i) >= 0) x -= (1 << i), v = sp[v][i];
		return v;
	}
}
ll getfar(ll v, ll ban) {
	if (dir[v] != ban) return dir[v];
	return ddir[v];
}
ll getfar(ll v, ll ban1, ll ban2) {
	if (ban1 > ban2) swap(ban1, ban2);
	if (ban2 == -1) return dir[v];
	if (ban1 == -1) return getfar(v, ban2);
	if (dir[v] != ban1 && dir[v] != ban2) return dir[v];
	if (ddir[v] != ban1 && ddir[v] != ban2) return ddir[v];
	return dddir[v];
}
ll getind(vector<ll>& v, ll c) {
	return lower_bound(v.begin(), v.end(), c) - v.begin();
}
//r1 : previous root, adj[r1][ind]=r2
void prop(ll r1, ll r2, ll ind) {
	if (ddir[r2] == -1) arr[r2] = savdis[r2][dir[r2]], update(r2, arr[r2]);
	else arr[r2] = savdis[r2][dir[r2]] + savdis[r2][ddir[r2]], update(r2, arr[r2]);
	ll f1 = getfar(r1, ind);
	ll f2 = getfar(r1, ind, f1);
	if (f1 == -1) arr[r1] = 0, update(r1, 0);
	else if (f2 == -1) arr[r1] = savdis[r1][f1], update(r1, arr[r1]);
	else arr[r1] = savdis[r1][f1] + savdis[r1][f2], update(r1, arr[r1]);
}
void dfs(ll x, ll p = 0) {
	ll i;
	for (i = 0; i < adj[x].size(); i++) {
		ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
		ll farv = sav[x][i];
		if (mxval(farv, adj[x][i]) >= savdis[x][i]) continue;
		ll xx = (savdis[x][i] - 1) / 2;
		ll root = prtx(x, farv, xx);
		if (lca(root, x) == root) revtree[prtx(x, root, 1)].insert(C[x]);
		else subtree[root].insert(C[x]);
	}
	ll v;
	for (i = 0; i < adj[x].size(); i++) {
		v = adj[x][i];
		if (v == p) continue;
		ll p1, p2;
		p1 = arr[x];
		p2 = arr[v];
		prop(x, v, i);
		dfs(v, x);
		arr[x] = p1;
		arr[v] = p2;
		update(x, arr[x]);
		update(v, arr[v]);
	}
}
ll mp[MAX];
ll anscnt;
void getans(ll x, ll p = 0) {
	for (auto c : subtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : revtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
	ans[x] = anscnt;
	for (auto v : adj[x]) {
		if (v == p) continue;
		getans(v, x);
	}
	for (auto c : revtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : subtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
}
void calcp(ll x, ll p = 0) {
	if (x != 1) {
		ll tmp = getind(adj[x], p);
		if (p == 1) sav[x][tmp] = rev[p][getind(adj[p], x)];
		else {
			ll v1 = rev[p][getind(adj[p], x)];
			ll v2 = sav[p][getind(adj[p], sp[p][0])];
			if (v1 > v2) swap(v1, v2);
			if (dis(x, v1) >= dis(x, v2)) sav[x][tmp] = v1;
			else sav[x][tmp] = v2;
		}
		savdis[x][tmp] = dis(x, sav[x][tmp]);
	}
	for (auto v : adj[x]) if (v != p) calcp(v, x);
}
signed main() {
	ios::sync_with_stdio(false), cin.tie(0);
	depth[0] = -1;
	ll N, M;
	cin >> N >> M;
	ll i, j;
	ll a, b;
	for (i = 1; i < N; i++) cin >> a >> b, adj[a].push_back(b), adj[b].push_back(a);
	for (i = 1; i <= N; i++) cin >> C[i];
	for (i = 1; i <= N; i++) sort(adj[i].begin(), adj[i].end());
	init(1);
	calc(1);
	calcp(1);
	cnt = 0;
	chain.push_back(vector<ll>());
	make_chain(1);
	make_tree();
	//400ms
	for (i = 1; i <= N; i++) {
		ll mx = 0;
		dir[i] = ddir[i] = dddir[i] = -1;
		for (j = 0; j < adj[i].size(); j++) if (mx < savdis[i][j]) mx = savdis[i][j], dir[i] = j;
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i]) continue;
			if (mx < savdis[i][j]) mx = savdis[i][j], ddir[i] = j;
		}
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i] || j == ddir[i]) continue;
			if (mx < savdis[i][j]) mx = savdis[i][j], dddir[i] = j;
		}
		if (i != 1) {
			ll p = getind(adj[i], sp[i][0]);
			ll r = getfar(i, p);
			ll rr = getfar(i, p, r);
			ll xx = 0;
			if (r != -1) xx += savdis[i][r];
			if (rr != -1) xx += savdis[i][rr];
			arr[i] = xx;
			update(i, xx);
		}
		else {
			ll dd;
			dd = ddir[1];
			if (dd == -1) arr[1] = depth[sav[1][dir[1]]];
			else arr[1] = depth[sav[1][dd]] + depth[sav[1][dir[1]]];
			update(1, arr[1]);
		}
	}
	subtree.resize(N + 1);
	revtree.resize(N + 1);
	dfs(1);
	for (i = 1; i <= N; i++) {
		for (auto c : revtree[i]) {
			if (!mp[c]) anscnt++;
			mp[c]++;
		}
	}
	getans(1);
	for (i = 1; i <= N; i++) cout << ans[i] << ln;
}

Compilation message

joi2019_ho_t5.cpp: In function 'void calc(ll, ll)':
joi2019_ho_t5.cpp:79:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   79 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:97:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   97 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:104:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  104 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:110:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  110 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void make_tree()':
joi2019_ho_t5.cpp:135:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<std::vector<long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  135 |  for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
      |              ~~^~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void dfs(ll, ll)':
joi2019_ho_t5.cpp:210:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  210 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:211:6: warning: unused variable 'fardir' [-Wunused-variable]
  211 |   ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
      |      ^~~~~~
joi2019_ho_t5.cpp:220:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  220 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'int main()':
joi2019_ho_t5.cpp:295:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  295 |   for (j = 0; j < adj[i].size(); j++) if (mx < savdis[i][j]) mx = savdis[i][j], dir[i] = j;
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:297:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  297 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:302:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  302 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 13 ms 19276 KB Output is correct
2 Correct 18 ms 20360 KB Output is correct
3 Correct 17 ms 19880 KB Output is correct
4 Correct 20 ms 20276 KB Output is correct
5 Correct 17 ms 20520 KB Output is correct
6 Correct 19 ms 20556 KB Output is correct
7 Correct 18 ms 20492 KB Output is correct
8 Correct 16 ms 20484 KB Output is correct
9 Correct 19 ms 20556 KB Output is correct
10 Correct 18 ms 20512 KB Output is correct
11 Correct 24 ms 20544 KB Output is correct
12 Correct 18 ms 20728 KB Output is correct
13 Correct 21 ms 20556 KB Output is correct
14 Correct 19 ms 20540 KB Output is correct
15 Correct 20 ms 20556 KB Output is correct
16 Correct 19 ms 20756 KB Output is correct
17 Correct 24 ms 20684 KB Output is correct
18 Correct 20 ms 20416 KB Output is correct
19 Correct 22 ms 20500 KB Output is correct
20 Correct 22 ms 20592 KB Output is correct
21 Correct 21 ms 20460 KB Output is correct
22 Correct 17 ms 20500 KB Output is correct
23 Correct 18 ms 20556 KB Output is correct
24 Correct 17 ms 20556 KB Output is correct
25 Correct 17 ms 20468 KB Output is correct
26 Correct 18 ms 20684 KB Output is correct
27 Correct 19 ms 20708 KB Output is correct
28 Correct 19 ms 20604 KB Output is correct
29 Correct 21 ms 20556 KB Output is correct
30 Correct 18 ms 20700 KB Output is correct
31 Correct 21 ms 20684 KB Output is correct
32 Correct 17 ms 20548 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 694 ms 90760 KB Output is correct
2 Correct 1191 ms 94700 KB Output is correct
3 Correct 152 ms 36436 KB Output is correct
4 Correct 1289 ms 143324 KB Output is correct
5 Execution timed out 2106 ms 141492 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 981 ms 119692 KB Output is correct
2 Execution timed out 2084 ms 150184 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 13 ms 19276 KB Output is correct
2 Correct 18 ms 20360 KB Output is correct
3 Correct 17 ms 19880 KB Output is correct
4 Correct 20 ms 20276 KB Output is correct
5 Correct 17 ms 20520 KB Output is correct
6 Correct 19 ms 20556 KB Output is correct
7 Correct 18 ms 20492 KB Output is correct
8 Correct 16 ms 20484 KB Output is correct
9 Correct 19 ms 20556 KB Output is correct
10 Correct 18 ms 20512 KB Output is correct
11 Correct 24 ms 20544 KB Output is correct
12 Correct 18 ms 20728 KB Output is correct
13 Correct 21 ms 20556 KB Output is correct
14 Correct 19 ms 20540 KB Output is correct
15 Correct 20 ms 20556 KB Output is correct
16 Correct 19 ms 20756 KB Output is correct
17 Correct 24 ms 20684 KB Output is correct
18 Correct 20 ms 20416 KB Output is correct
19 Correct 22 ms 20500 KB Output is correct
20 Correct 22 ms 20592 KB Output is correct
21 Correct 21 ms 20460 KB Output is correct
22 Correct 17 ms 20500 KB Output is correct
23 Correct 18 ms 20556 KB Output is correct
24 Correct 17 ms 20556 KB Output is correct
25 Correct 17 ms 20468 KB Output is correct
26 Correct 18 ms 20684 KB Output is correct
27 Correct 19 ms 20708 KB Output is correct
28 Correct 19 ms 20604 KB Output is correct
29 Correct 21 ms 20556 KB Output is correct
30 Correct 18 ms 20700 KB Output is correct
31 Correct 21 ms 20684 KB Output is correct
32 Correct 17 ms 20548 KB Output is correct
33 Correct 694 ms 90760 KB Output is correct
34 Correct 1191 ms 94700 KB Output is correct
35 Correct 152 ms 36436 KB Output is correct
36 Correct 1289 ms 143324 KB Output is correct
37 Execution timed out 2106 ms 141492 KB Time limit exceeded
38 Halted 0 ms 0 KB -