Submission #405607

# Submission time Handle Problem Language Result Execution time Memory
405607 2021-05-16T15:03:29 Z flappybird Unique Cities (JOI19_ho_t5) C++14
4 / 100
2000 ms 150160 KB
#include <bits/stdc++.h>
#include <unordered_map>
#pragma GCC optimize("O3")
using namespace std;
typedef long ll;
typedef pair<ll, ll> pll;
#define MAX 201010
#define MAXS 18
#define INF 1000000000000000001
#define bb ' '
#define ln '\n'
struct segtree {
	ll N;
	ll s;
	vector<ll> tree, l, r;
	void update(ll x, ll a) {
		x += s - 1;
		tree[x] = a;
		x /= 2;
		while (x) tree[x] = max(tree[x * 2], tree[x * 2 + 1]), x /= 2;
	}
	ll query(ll low, ll high, ll loc = 1) {
		if (l[loc] == low && r[loc] == high) return tree[loc];
		if (r[loc * 2] >= high) return query(low, high, loc * 2);
		if (l[loc * 2 + 1] <= low) return query(low, high, loc * 2 + 1);
		return max(query(low, r[loc * 2], loc * 2), query(l[loc * 2 + 1], high, loc * 2 + 1));
	}
	void init(ll x = 1) {
		if (x >= s) {
			l[x] = r[x] = x - s + 1;
			return;
		}
		init(x * 2);
		init(x * 2 + 1);
		l[x] = l[x * 2];
		r[x] = r[x * 2 + 1];
	}
	segtree(ll n) {
		N = n;
		s = (ll)1 << (ll)ceil(log2(N));
		tree.resize(2 * s + 1);
		l.resize(2 * s + 1);
		r.resize(2 * s + 1);
		init();
	}
};
vector<ll> adj[MAX], sav[MAX], savdis[MAX], rev[MAX];
ll dir[MAX], ddir[MAX], dddir[MAX];
vector<vector<ll>> chain;
vector<set<ll>> subtree, revtree;
vector<segtree> chainseg;
ll C[MAX], depth[MAX], mxdepv[MAX];
ll mxdep[MAX];
ll sp[MAX][MAXS];
ll cnt;
ll num[MAX];
pll cnum[MAX];
ll ans[MAX];
ll arr[MAX];
ll init(ll x, ll p = 0, ll d = 0) {
	sp[x][0] = p;
	ll i;
	for (i = 1; i < MAXS; i++) sp[x][i] = sp[sp[x][i - 1]][i - 1];
	depth[x] = d;
	ll sum = 1;
	sav[x].resize(adj[x].size());
	savdis[x].resize(adj[x].size());
	rev[x].resize(adj[x].size());
	for (auto v : adj[x]) {
		if (v == p) continue;
		sum += init(v, x, d + 1);
	}
	return num[x] = sum;
}
void calc(ll x, ll p = 0) {
	ll i;
	ll mx = 0;
	mxdepv[x] = x;
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		calc(adj[x][i], x);
		if (mx < depth[mxdepv[adj[x][i]]]) mx = depth[mxdepv[adj[x][i]]], mxdepv[x] = mxdepv[adj[x][i]];
		sav[x][i] = mxdepv[adj[x][i]];
		savdis[x][i] = depth[sav[x][i]] - depth[x];
	}
	ll cnt = 0;
	ll vv, vvv;
	vv = vvv = -1;
	ll nv = -1;
	ll nmx = 0;
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (depth[mxdepv[v]] == mx) cnt++, vvv = vv, vv = v;
		else if (depth[mxdepv[v]] > nmx) nmx = depth[mxdepv[v]], nv = v;
	}
	if (cnt >= 2) {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? vvv : vv);
			}
		}
	}
	else {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? nv : vv);
			}
		}
	}
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		if (rev[x][i] == -1) rev[x][i] = x;
		else rev[x][i] = mxdepv[rev[x][i]];
	}
}
void make_chain(ll x, ll p = 0) {
	ll mx, mv;
	mx = mv = 0;
	chain[cnt].push_back(x);
	cnum[x] = { cnt, chain[cnt].size() - 1 };
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (mx < num[v]) mx = num[v], mv = v;
	}
	if (mv) make_chain(mv, x);
	for (auto v : adj[x]) {
		if (v == p || v == mv) continue;
		cnt++;
		chain.push_back(vector<ll>());
		make_chain(v, x);
	}
}
void make_tree() {
	ll i;
	for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
}
void update(ll v, ll x) {
	chainseg[cnum[v].first].update(cnum[v].second + 1, x);
}
//1을 루트로 하는 LCA
ll lca(ll u, ll v) {
	if (depth[u] != depth[v]) {
		if (depth[u] < depth[v]) swap(u, v);
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (depth[sp[u][i]] >= depth[v]) u = sp[u][i];
	}
	if (u == v) return u;
	ll i;
	for (i = MAXS - 1; i >= 0; i--) if (sp[u][i] != sp[v][i]) u = sp[u][i], v = sp[v][i];
	return sp[v][0];
}
//HLD query
ll mxval(ll u, ll v) {
	ll ans = 0;
	ll l = lca(u, v);
	while (cnum[u].first != cnum[l].first) ans = max(ans, chainseg[cnum[u].first].query(1, cnum[u].second + 1)), u = sp[chain[cnum[u].first][0]][0];
	while (cnum[v].first != cnum[l].first) ans = max(ans, chainseg[cnum[v].first].query(1, cnum[v].second + 1)), v = sp[chain[cnum[v].first][0]][0];
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[u].second + 1));
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[v].second + 1));
	return ans;
}
//두 정점 사이 거리
ll dis(ll u, ll v) { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; }
ll dis(ll u, ll v, ll l) { return depth[u] + depth[v] - 2 * depth[l]; }
//r이 루트, v의 x번째 부모
ll prtx(ll r, ll v, ll x) {
	if (x == 0) return v;
	ll l = lca(r, v);
	ll rv = dis(r, v, l);
	if (rv < x) return 0;
	if (dis(l, v, l) < x) {
		ll d = rv - x;
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (d - (1 << i) >= 0) d -= (1 << i), r = sp[r][i];
		return r;
	}
	else {
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (x - (1 << i) >= 0) x -= (1 << i), v = sp[v][i];
		return v;
	}
}
ll getfar(ll v, ll ban) {
	if (dir[v] != ban) return dir[v];
	return ddir[v];
}
ll getfar(ll v, ll ban1, ll ban2) {
	if (ban1 > ban2) swap(ban1, ban2);
	if (ban2 == -1) return dir[v];
	if (ban1 == -1) return getfar(v, ban2);
	if (dir[v] != ban1 && dir[v] != ban2) return dir[v];
	if (ddir[v] != ban1 && ddir[v] != ban2) return ddir[v];
	return dddir[v];
}
ll getind(vector<ll>& v, ll c) {
	return lower_bound(v.begin(), v.end(), c) - v.begin();
}
//r1 : previous root, adj[r1][ind]=r2
void prop(ll r1, ll r2, ll ind) {
	if (ddir[r2] == -1) arr[r2] = savdis[r2][dir[r2]], update(r2, arr[r2]);
	else arr[r2] = savdis[r2][dir[r2]] + savdis[r2][ddir[r2]], update(r2, arr[r2]);
	ll f1 = getfar(r1, ind);
	ll f2 = getfar(r1, ind, f1);
	if (f1 == -1) arr[r1] = 0, update(r1, 0);
	else if (f2 == -1) arr[r1] = savdis[r1][f1], update(r1, arr[r1]);
	else arr[r1] = savdis[r1][f1] + savdis[r1][f2], update(r1, arr[r1]);
}
void dfs(ll x, ll p = 0) {
	ll i;
	for (i = 0; i < adj[x].size(); i++) {
		ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
		ll farv = sav[x][i];
		if (mxval(farv, adj[x][i]) >= savdis[x][i]) continue;
		ll xx = (savdis[x][i] - 1) / 2;
		ll root = prtx(x, farv, xx);
		if (lca(root, x) == root) revtree[prtx(x, root, 1)].insert(C[x]);
		else subtree[root].insert(C[x]);
	}
	ll v;
	for (i = 0; i < adj[x].size(); i++) {
		v = adj[x][i];
		if (v == p) continue;
		ll p1, p2;
		p1 = arr[x];
		p2 = arr[v];
		prop(x, v, i);
		dfs(v, x);
		arr[x] = p1;
		arr[v] = p2;
		update(x, arr[x]);
		update(v, arr[v]);
	}
}
ll mp[MAX];
ll anscnt;
void getans(ll x, ll p = 0) {
	for (auto c : subtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : revtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
	ans[x] = anscnt;
	for (auto v : adj[x]) {
		if (v == p) continue;
		getans(v, x);
	}
	for (auto c : revtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : subtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
}
void calcp(ll x, ll p = 0) {
	if (x != 1) {
		ll tmp = getind(adj[x], p);
		if (p == 1) sav[x][tmp] = rev[p][getind(adj[p], x)];
		else {
			ll v1 = rev[p][getind(adj[p], x)];
			ll v2 = sav[p][getind(adj[p], sp[p][0])];
			if (v1 > v2) swap(v1, v2);
			if (dis(x, v1) >= dis(x, v2)) sav[x][tmp] = v1;
			else sav[x][tmp] = v2;
		}
		savdis[x][tmp] = dis(x, sav[x][tmp]);
	}
	for (auto v : adj[x]) if (v != p) calcp(v, x);
}
signed main() {
	ios::sync_with_stdio(false), cin.tie(0);
	depth[0] = -1;
	ll N, M;
	cin >> N >> M;
	ll i, j;
	ll a, b;
	for (i = 1; i < N; i++) cin >> a >> b, adj[a].push_back(b), adj[b].push_back(a);
	for (i = 1; i <= N; i++) cin >> C[i];
	for (i = 1; i <= N; i++) sort(adj[i].begin(), adj[i].end());
	init(1);
	calc(1);
	calcp(1);
	cnt = 0;
	chain.push_back(vector<ll>());
	make_chain(1);
	make_tree();
	//400ms
	for (i = 1; i <= N; i++) {
		ll mx = 0;
		dir[i] = ddir[i] = dddir[i] = -1;
		for (j = 0; j < adj[i].size(); j++) if (mx < savdis[i][j]) mx = savdis[i][j], dir[i] = j;
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i]) continue;
			if (mx < savdis[i][j]) mx = savdis[i][j], ddir[i] = j;
		}
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i] || j == ddir[i]) continue;
			if (mx < savdis[i][j]) mx = savdis[i][j], dddir[i] = j;
		}
		if (i != 1) {
			ll p = getind(adj[i], sp[i][0]);
			ll r = getfar(i, p);
			ll rr = getfar(i, p, r);
			ll xx = 0;
			if (r != -1) xx += savdis[i][r];
			if (rr != -1) xx += savdis[i][rr];
			arr[i] = xx;
			update(i, xx);
		}
		else {
			ll dd;
			dd = ddir[1];
			if (dd == -1) arr[1] = depth[sav[1][dir[1]]];
			else arr[1] = depth[sav[1][dd]] + depth[sav[1][dir[1]]];
			update(1, arr[1]);
		}
	}
	subtree.resize(N + 1);
	revtree.resize(N + 1);
	dfs(1);
	for (i = 1; i <= N; i++) {
		for (auto c : revtree[i]) {
			if (!mp[c]) anscnt++;
			mp[c]++;
		}
	}
	getans(1);
	for (i = 1; i <= N; i++) cout << ans[i] << ln;
}

Compilation message

joi2019_ho_t5.cpp: In function 'void calc(ll, ll)':
joi2019_ho_t5.cpp:79:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   79 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:97:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   97 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:104:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  104 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:110:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  110 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void make_tree()':
joi2019_ho_t5.cpp:135:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<std::vector<long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  135 |  for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
      |              ~~^~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void dfs(ll, ll)':
joi2019_ho_t5.cpp:210:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  210 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:211:6: warning: unused variable 'fardir' [-Wunused-variable]
  211 |   ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
      |      ^~~~~~
joi2019_ho_t5.cpp:220:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  220 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'int main()':
joi2019_ho_t5.cpp:295:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  295 |   for (j = 0; j < adj[i].size(); j++) if (mx < savdis[i][j]) mx = savdis[i][j], dir[i] = j;
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:297:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  297 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:302:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long int'} and 'std::vector<long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  302 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 13 ms 19264 KB Output is correct
2 Correct 19 ms 20344 KB Output is correct
3 Correct 16 ms 19936 KB Output is correct
4 Correct 19 ms 20312 KB Output is correct
5 Correct 18 ms 20512 KB Output is correct
6 Correct 20 ms 20572 KB Output is correct
7 Correct 18 ms 20388 KB Output is correct
8 Correct 19 ms 20556 KB Output is correct
9 Correct 18 ms 20556 KB Output is correct
10 Correct 20 ms 20580 KB Output is correct
11 Correct 21 ms 20468 KB Output is correct
12 Correct 18 ms 20736 KB Output is correct
13 Correct 20 ms 20592 KB Output is correct
14 Correct 18 ms 20508 KB Output is correct
15 Correct 18 ms 20556 KB Output is correct
16 Correct 16 ms 20812 KB Output is correct
17 Correct 18 ms 20652 KB Output is correct
18 Correct 17 ms 20524 KB Output is correct
19 Correct 18 ms 20508 KB Output is correct
20 Correct 22 ms 20640 KB Output is correct
21 Correct 19 ms 20452 KB Output is correct
22 Correct 17 ms 20472 KB Output is correct
23 Correct 17 ms 20508 KB Output is correct
24 Correct 20 ms 20556 KB Output is correct
25 Correct 17 ms 20556 KB Output is correct
26 Correct 17 ms 20756 KB Output is correct
27 Correct 22 ms 20664 KB Output is correct
28 Correct 20 ms 20716 KB Output is correct
29 Correct 18 ms 20532 KB Output is correct
30 Correct 16 ms 20812 KB Output is correct
31 Correct 19 ms 20640 KB Output is correct
32 Correct 18 ms 20504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 706 ms 90752 KB Output is correct
2 Correct 1254 ms 94764 KB Output is correct
3 Correct 183 ms 36344 KB Output is correct
4 Correct 1240 ms 143220 KB Output is correct
5 Execution timed out 2098 ms 141636 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 948 ms 119748 KB Output is correct
2 Execution timed out 2102 ms 150160 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 13 ms 19264 KB Output is correct
2 Correct 19 ms 20344 KB Output is correct
3 Correct 16 ms 19936 KB Output is correct
4 Correct 19 ms 20312 KB Output is correct
5 Correct 18 ms 20512 KB Output is correct
6 Correct 20 ms 20572 KB Output is correct
7 Correct 18 ms 20388 KB Output is correct
8 Correct 19 ms 20556 KB Output is correct
9 Correct 18 ms 20556 KB Output is correct
10 Correct 20 ms 20580 KB Output is correct
11 Correct 21 ms 20468 KB Output is correct
12 Correct 18 ms 20736 KB Output is correct
13 Correct 20 ms 20592 KB Output is correct
14 Correct 18 ms 20508 KB Output is correct
15 Correct 18 ms 20556 KB Output is correct
16 Correct 16 ms 20812 KB Output is correct
17 Correct 18 ms 20652 KB Output is correct
18 Correct 17 ms 20524 KB Output is correct
19 Correct 18 ms 20508 KB Output is correct
20 Correct 22 ms 20640 KB Output is correct
21 Correct 19 ms 20452 KB Output is correct
22 Correct 17 ms 20472 KB Output is correct
23 Correct 17 ms 20508 KB Output is correct
24 Correct 20 ms 20556 KB Output is correct
25 Correct 17 ms 20556 KB Output is correct
26 Correct 17 ms 20756 KB Output is correct
27 Correct 22 ms 20664 KB Output is correct
28 Correct 20 ms 20716 KB Output is correct
29 Correct 18 ms 20532 KB Output is correct
30 Correct 16 ms 20812 KB Output is correct
31 Correct 19 ms 20640 KB Output is correct
32 Correct 18 ms 20504 KB Output is correct
33 Correct 706 ms 90752 KB Output is correct
34 Correct 1254 ms 94764 KB Output is correct
35 Correct 183 ms 36344 KB Output is correct
36 Correct 1240 ms 143220 KB Output is correct
37 Execution timed out 2098 ms 141636 KB Time limit exceeded
38 Halted 0 ms 0 KB -