Submission #405497

# Submission time Handle Problem Language Result Execution time Memory
405497 2021-05-16T13:24:51 Z flappybird Unique Cities (JOI19_ho_t5) C++14
4 / 100
2000 ms 135356 KB
#include <bits/stdc++.h>
#include <unordered_map>
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
#define MAX 201010
#define MAXS 20
#define INF 1000000000000000001
#define bb ' '
#define ln '\n'
struct segtree {
	ll N;
	ll s;
	vector<ll> tree, l, r;
	void update(ll x, ll a) {
		x += s - 1;
		tree[x] = a;
		x /= 2;
		while (x) tree[x] = max(tree[x * 2], tree[x * 2 + 1]), x /= 2;
	}
	ll query(ll low, ll high, ll loc = 1) {
		if (l[loc] == low && r[loc] == high) return tree[loc];
		if (r[loc * 2] >= high) return query(low, high, loc * 2);
		if (l[loc * 2 + 1] <= low) return query(low, high, loc * 2 + 1);
		return max(query(low, r[loc * 2], loc * 2), query(l[loc * 2 + 1], high, loc * 2 + 1));
	}
	void init(ll x = 1) {
		if (x >= s) {
			l[x] = r[x] = x - s + 1;
			return;
		}
		init(x * 2);
		init(x * 2 + 1);
		l[x] = l[x * 2];
		r[x] = r[x * 2 + 1];
	}
	segtree(ll n) {
		N = n;
		s = 1LL << (ll)ceil(log2(N));
		tree.resize(2 * s + 1);
		l.resize(2 * s + 1);
		r.resize(2 * s + 1);
		init();
	}
};
vector<ll> adj[MAX], sav[MAX], rev[MAX];
ll dir[MAX], ddir[MAX], dddir[MAX];
vector<vector<ll>> chain;
vector<set<ll>> subtree, revtree;
vector<segtree> chainseg;
ll C[MAX], depth[MAX], mxdepv[MAX], prtval[MAX];
pll range[MAX];
ll sp[MAX][MAXS];
ll cnt;
ll num[MAX];
pll cnum[MAX];
ll ans[MAX];
ll arr[MAX];
ll init(ll x, ll p = 0, ll d = 0) {
	sp[x][0] = p;
	ll i;
	for (i = 1; i < MAXS; i++) sp[x][i] = sp[sp[x][i - 1]][i - 1];
	depth[x] = d;
	ll sum = 1;
	sav[x].resize(adj[x].size());
	rev[x].resize(adj[x].size());
	for (auto v : adj[x]) {
		if (v == p) continue;
		sum += init(v, x, d + 1);
	}
	return num[x] = sum;
}
void calc(ll x, ll p = 0) {
	ll i;
	ll mx = 0;
	mxdepv[x] = x;
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		calc(adj[x][i], x);
		if (mx < depth[mxdepv[adj[x][i]]]) mx = depth[mxdepv[adj[x][i]]], mxdepv[x] = mxdepv[adj[x][i]];
		sav[x][i] = mxdepv[adj[x][i]];
	}
	ll cnt = 0;
	ll vv, vvv;
	vv = vvv = -1;
	ll nv = -1;
	ll nmx = 0;
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (depth[mxdepv[v]] == mx) cnt++, vvv = vv, vv = v;
		else if (depth[mxdepv[v]] > nmx) nmx = depth[mxdepv[v]], nv = v;
	}
	if (cnt >= 2) {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? vvv : vv);
			}
		}
	}
	else {
		for (i = 0; i < adj[x].size(); i++) {
			if (adj[x][i] != p) {
				rev[x][i] = (adj[x][i] == vv ? nv : vv);
			}
		}
	}
	for (i = 0; i < adj[x].size(); i++) {
		if (adj[x][i] == p) continue;
		if (rev[x][i] == -1) rev[x][i] = x;
		else rev[x][i] = mxdepv[rev[x][i]];
	}
}
void make_chain(ll x, ll p = 0) {
	ll mx, mv;
	mx = mv = 0;
	chain[cnt].push_back(x);
	cnum[x] = { cnt, chain[cnt].size() - 1 };
	for (auto v : adj[x]) {
		if (v == p) continue;
		if (mx < num[v]) mx = num[v], mv = v;
	}
	if (mv) make_chain(mv, x);
	for (auto v : adj[x]) {
		if (v == p || v == mv) continue;
		cnt++;
		chain.push_back(vector<ll>());
		make_chain(v, x);
	}
}
void make_tree() {
	ll i;
	for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
}
void update(ll v, ll x) {
	chainseg[cnum[v].first].update(cnum[v].second + 1, x);
}
//1을 루트로 하는 LCA
ll lca(ll u, ll v) {
	if (depth[u] != depth[v]) {
		if (depth[u] < depth[v]) swap(u, v);
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (depth[sp[u][i]] >= depth[v]) u = sp[u][i];
	}
	if (u == v) return u;
	ll i;
	for (i = MAXS - 1; i >= 0; i--) if (sp[u][i] != sp[v][i]) u = sp[u][i], v = sp[v][i];
	return sp[v][0];
}
//HLD query
ll mxval(ll u, ll v) {
	ll ans = 0;
	ll l = lca(u, v);
	while (cnum[u].first != cnum[l].first) ans = max(ans, chainseg[cnum[u].first].query(1, cnum[u].second + 1)), u = sp[chain[cnum[u].first][0]][0];
	while (cnum[v].first != cnum[l].first) ans = max(ans, chainseg[cnum[v].first].query(1, cnum[v].second + 1)), v = sp[chain[cnum[v].first][0]][0];
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[u].second + 1));
	ans = max(ans, chainseg[cnum[l].first].query(cnum[l].second + 1, cnum[v].second + 1));
	return ans;
}
//두 정점 사이 거리
ll dis(ll u, ll v) { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; }
//r이 루트, v의 x번째 부모
ll prtx(ll r, ll v, ll x) {
	if (x == 0) return v;
	ll rv = dis(r, v);
	if (rv < x) return 0;
	ll l = lca(r, v);
	if (dis(l, v) < x) {
		ll d = rv - x;
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (d - (1 << i) >= 0) d -= (1 << i), r = sp[r][i];
		return r;
	}
	else {
		ll i;
		for (i = MAXS - 1; i >= 0; i--) if (x - (1 << i) >= 0) x -= (1 << i), v = sp[v][i];
		return v;
	}
}
ll getfar(ll v, ll ban) {
	if (dir[v] != ban) return dir[v];
	return ddir[v];
}
ll getfar(ll v, ll ban1, ll ban2) {
	if (ban1 > ban2) swap(ban1, ban2);
	if (ban2 == -1) return dir[v];
	if (ban1 == -1) return getfar(v, ban2);
	if (dir[v] != ban1 && dir[v] != ban2) return dir[v];
	if (ddir[v] != ban1 && ddir[v] != ban2) return ddir[v];
	return dddir[v];
}
ll getind(vector<ll>& v, ll c) {
	return lower_bound(v.begin(), v.end(), c) - v.begin();
}
//r1 : previous root
void prop(ll r1, ll r2) {
	if (ddir[r2] == -1) arr[r2] = dis(sav[r2][dir[r2]], r2), update(r2, arr[r2]);
	else arr[r2] = dis(r2, sav[r2][dir[r2]]) + dis(r2, sav[r2][ddir[r2]]), update(r2, arr[r2]);
	ll ind = getind(adj[r1], r2);
	ll f1 = getfar(r1, ind);
	ll f2 = getfar(r1, ind, f1);
	if (f1 == -1) arr[r1] = 0, update(r1, 0);
	else if (f2 == -1) arr[r1] = dis(r1, sav[r1][f1]), update(r1, arr[r1]);
	else arr[r1] = dis(r1, sav[r1][f1]) + dis(r1, sav[r1][f2]), update(r1, arr[r1]);
}
void dfs(ll x, ll p = 0) {
	ll i;
	for (i = 0; i < adj[x].size(); i++) {
		ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
		ll farv = sav[x][i];
		ll fardis = dis(x, farv);
		if (mxval(farv, adj[x][i]) >= fardis) continue;
		ll xx = (fardis - 1) / 2;
		ll root = prtx(x, farv, xx);
		if (lca(root, x) == root) revtree[prtx(x, root, 1)].insert(C[x]);
		else subtree[root].insert(C[x]);
	}
	for (auto v : adj[x]) {
		if (v == p) continue;
		ll p1, p2;
		p1 = arr[x];
		p2 = arr[v];
		prop(x, v);
		dfs(v, x);
		arr[x] = p1;
		arr[v] = p2;
		update(x, arr[x]);
		update(v, arr[v]);
	}
}
ll mp[MAX];
ll anscnt;
void getans(ll x, ll p = 0) {
	for (auto c : subtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : revtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
	ans[x] = anscnt;
	for (auto v : adj[x]) {
		if (v == p) continue;
		getans(v, x);
	}
	for (auto c : revtree[x]) {
		if (!mp[c]) anscnt++;
		mp[c]++;
	}
	for (auto c : subtree[x]) {
		mp[c]--;
		if (!mp[c]) anscnt--;
	}
}
void calcp(ll x, ll p = 0) {
	if (x != 1) {
		if (p == 1) sav[x][getind(adj[x], p)] = rev[p][getind(adj[p], x)];
		else {
			ll v1 = rev[p][getind(adj[p], x)];
			ll v2 = sav[p][getind(adj[p], sp[p][0])];
			if (v1 > v2) swap(v1, v2);
			if (dis(x, v1) >= dis(x, v2)) sav[x][getind(adj[x], p)] = v1;
			else sav[x][getind(adj[x], p)] = v2;
		}
	}
	for (auto v : adj[x]) if (v != p) calcp(v, x);
}
signed main() {
	ios::sync_with_stdio(false), cin.tie(0);
	depth[0] = -1;
	ll N, M;
	cin >> N >> M;
	ll i, j;
	ll a, b;
	for (i = 1; i < N; i++) cin >> a >> b, adj[a].push_back(b), adj[b].push_back(a);
	for (i = 1; i <= N; i++) cin >> C[i];
	for (i = 1; i <= N; i++) sort(adj[i].begin(), adj[i].end());
	init(1);
	calc(1);
	calcp(1);
	cnt = 0;
	chain.push_back(vector<ll>());
	make_chain(1);
	make_tree();
	for (i = 1; i <= N; i++) {
		ll mx = 0, mv = 0;
		dir[i] = ddir[i] = dddir[i] = -1;
		for (j = 0; j < adj[i].size(); j++) if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), dir[i] = j;
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i]) continue;
			if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), ddir[i] = j;
		}
		mx = 0;
		for (j = 0; j < adj[i].size(); j++) {
			if (j == dir[i] || j == ddir[i]) continue;
			if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), dddir[i] = j;
		}
		if (i != 1) {
			ll p = getind(adj[i], sp[i][0]);
			ll r = getfar(i, p);
			ll rr = getfar(i, p, r);
			ll xx = 0;
			if (r != -1) xx += dis(i, sav[i][r]);
			if (rr != -1) xx += dis(i, sav[i][rr]);
			arr[i] = xx;
			update(i, xx);
		}
		else {
			ll dd;
			dd = ddir[1];
			if (dd == -1) arr[1] = depth[sav[1][dir[1]]];
			else arr[1] = depth[sav[1][dd]] + depth[sav[1][dir[1]]];
			update(1, arr[1]);
		}
	}
	subtree.resize(N + 1);
	revtree.resize(N + 1);
	dfs(1);
	for (i = 1; i <= N; i++) {
		for (auto c : revtree[i]) {
			if (!mp[c]) anscnt++;
			mp[c]++;
		}
	}
	getans(1);
	for (i = 1; i <= N; i++) cout << ans[i] << ln;
}

Compilation message

joi2019_ho_t5.cpp: In function 'void calc(ll, ll)':
joi2019_ho_t5.cpp:81:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   81 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:98:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   98 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:105:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  105 |   for (i = 0; i < adj[x].size(); i++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:111:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  111 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void make_tree()':
joi2019_ho_t5.cpp:136:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<std::vector<long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  136 |  for (i = 0; i < chain.size(); i++) chainseg.push_back(segtree(chain[i].size()));
      |              ~~^~~~~~~~~~~~~~
joi2019_ho_t5.cpp: In function 'void dfs(ll, ll)':
joi2019_ho_t5.cpp:211:16: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  211 |  for (i = 0; i < adj[x].size(); i++) {
      |              ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:212:6: warning: unused variable 'fardir' [-Wunused-variable]
  212 |   ll fardir = getfar(adj[x][i], getind(adj[adj[x][i]], x));
      |      ^~~~~~
joi2019_ho_t5.cpp: In function 'int main()':
joi2019_ho_t5.cpp:292:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  292 |   for (j = 0; j < adj[i].size(); j++) if (mx < dis(i, sav[i][j])) mx = dis(i, sav[i][j]), dir[i] = j;
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:294:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  294 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:299:17: warning: comparison of integer expressions of different signedness: 'll' {aka 'long long int'} and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  299 |   for (j = 0; j < adj[i].size(); j++) {
      |               ~~^~~~~~~~~~~~~~~
joi2019_ho_t5.cpp:290:14: warning: unused variable 'mv' [-Wunused-variable]
  290 |   ll mx = 0, mv = 0;
      |              ^~
# Verdict Execution time Memory Grader output
1 Correct 9 ms 14540 KB Output is correct
2 Correct 17 ms 15680 KB Output is correct
3 Correct 14 ms 15148 KB Output is correct
4 Correct 18 ms 15568 KB Output is correct
5 Correct 19 ms 15820 KB Output is correct
6 Correct 22 ms 15876 KB Output is correct
7 Correct 19 ms 15692 KB Output is correct
8 Correct 17 ms 15752 KB Output is correct
9 Correct 18 ms 15692 KB Output is correct
10 Correct 18 ms 15820 KB Output is correct
11 Correct 18 ms 15692 KB Output is correct
12 Correct 16 ms 15884 KB Output is correct
13 Correct 22 ms 15780 KB Output is correct
14 Correct 18 ms 15832 KB Output is correct
15 Correct 19 ms 15820 KB Output is correct
16 Correct 16 ms 15948 KB Output is correct
17 Correct 19 ms 15948 KB Output is correct
18 Correct 19 ms 15692 KB Output is correct
19 Correct 17 ms 15736 KB Output is correct
20 Correct 21 ms 15936 KB Output is correct
21 Correct 20 ms 15692 KB Output is correct
22 Correct 18 ms 15692 KB Output is correct
23 Correct 18 ms 15836 KB Output is correct
24 Correct 18 ms 15820 KB Output is correct
25 Correct 18 ms 15820 KB Output is correct
26 Correct 16 ms 16000 KB Output is correct
27 Correct 21 ms 15876 KB Output is correct
28 Correct 19 ms 15872 KB Output is correct
29 Correct 19 ms 15772 KB Output is correct
30 Correct 16 ms 15948 KB Output is correct
31 Correct 20 ms 15948 KB Output is correct
32 Correct 19 ms 15692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 869 ms 84236 KB Output is correct
2 Correct 1498 ms 88208 KB Output is correct
3 Correct 222 ms 31380 KB Output is correct
4 Correct 1616 ms 135356 KB Output is correct
5 Execution timed out 2088 ms 128700 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1221 ms 112236 KB Output is correct
2 Execution timed out 2077 ms 130132 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 9 ms 14540 KB Output is correct
2 Correct 17 ms 15680 KB Output is correct
3 Correct 14 ms 15148 KB Output is correct
4 Correct 18 ms 15568 KB Output is correct
5 Correct 19 ms 15820 KB Output is correct
6 Correct 22 ms 15876 KB Output is correct
7 Correct 19 ms 15692 KB Output is correct
8 Correct 17 ms 15752 KB Output is correct
9 Correct 18 ms 15692 KB Output is correct
10 Correct 18 ms 15820 KB Output is correct
11 Correct 18 ms 15692 KB Output is correct
12 Correct 16 ms 15884 KB Output is correct
13 Correct 22 ms 15780 KB Output is correct
14 Correct 18 ms 15832 KB Output is correct
15 Correct 19 ms 15820 KB Output is correct
16 Correct 16 ms 15948 KB Output is correct
17 Correct 19 ms 15948 KB Output is correct
18 Correct 19 ms 15692 KB Output is correct
19 Correct 17 ms 15736 KB Output is correct
20 Correct 21 ms 15936 KB Output is correct
21 Correct 20 ms 15692 KB Output is correct
22 Correct 18 ms 15692 KB Output is correct
23 Correct 18 ms 15836 KB Output is correct
24 Correct 18 ms 15820 KB Output is correct
25 Correct 18 ms 15820 KB Output is correct
26 Correct 16 ms 16000 KB Output is correct
27 Correct 21 ms 15876 KB Output is correct
28 Correct 19 ms 15872 KB Output is correct
29 Correct 19 ms 15772 KB Output is correct
30 Correct 16 ms 15948 KB Output is correct
31 Correct 20 ms 15948 KB Output is correct
32 Correct 19 ms 15692 KB Output is correct
33 Correct 869 ms 84236 KB Output is correct
34 Correct 1498 ms 88208 KB Output is correct
35 Correct 222 ms 31380 KB Output is correct
36 Correct 1616 ms 135356 KB Output is correct
37 Execution timed out 2088 ms 128700 KB Time limit exceeded
38 Halted 0 ms 0 KB -