//雪花飄飄北風嘯嘯
//天地一片蒼茫
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
#define ll long long
#define ii pair<ll,ll>
#define iii pair<ii,ll>
#define fi first
#define se second
#define endl '\n'
#define debug(x) cout << #x << " is " << x << endl
#define pub push_back
#define pob pop_back
#define puf push_front
#define pof pop_front
#define lb lower_bound
#define ub upper_bound
#define rep(x,start,end) for(auto x=(start)-((start)>(end));x!=(end)-((start)>(end));((start)<(end)?x++:x--))
#define all(x) (x).begin(),(x).end()
#define sz(x) (int)(x).size()
#define indexed_set tree<ll,null_type,less<ll>,rb_tree_tag,tree_order_statistics_node_update>
//change less to less_equal for non distinct pbds, but erase will bug
mt19937 rng(chrono::system_clock::now().time_since_epoch().count());
typedef vector<ll> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
ll MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
int n = int(cost.size());
// construct dual feasible solution
VD u(n);
VD v(n);
for (int i = 0; i < n; i++) {
u[i] = cost[i][0];
for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);
}
for (int j = 0; j < n; j++) {
v[j] = cost[0][j] - u[0];
for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
}
// construct primal solution satisfying complementary slackness
Lmate = VI(n, -1);
Rmate = VI(n, -1);
int mated = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (Rmate[j] != -1) continue;
if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {
Lmate[i] = j;
Rmate[j] = i;
mated++;
break;
}
}
}
VD dist(n);
VI dad(n);
VI seen(n);
// repeat until primal solution is feasible
while (mated < n) {
// find an unmatched left node
int s = 0;
while (Lmate[s] != -1) s++;
// initialize Dijkstra
fill(dad.begin(), dad.end(), -1);
fill(seen.begin(), seen.end(), 0);
for (int k = 0; k < n; k++)
dist[k] = cost[s][k] - u[s] - v[k];
int j = 0;
while (true) {
// find closest
j = -1;
for (int k = 0; k < n; k++) {
if (seen[k]) continue;
if (j == -1 || dist[k] < dist[j]) j = k;
}
seen[j] = 1;
// termination condition
if (Rmate[j] == -1) break;
// relax neighbors
const int i = Rmate[j];
for (int k = 0; k < n; k++) {
if (seen[k]) continue;
const ll new_dist = dist[j] + cost[i][k] - u[i] - v[k];
if (dist[k] > new_dist) {
dist[k] = new_dist;
dad[k] = j;
}
}
}
// update dual variables
for (int k = 0; k < n; k++) {
if (k == j || !seen[k]) continue;
const int i = Rmate[k];
v[k] += dist[k] - dist[j];
u[i] -= dist[k] - dist[j];
}
u[s] += dist[j];
// augment along path
while (dad[j] >= 0) {
const int d = dad[j];
Rmate[j] = Rmate[d];
Lmate[Rmate[j]] = j;
j = d;
}
Rmate[j] = s;
Lmate[s] = j;
mated++;
}
ll value = 0;
for (int i = 0; i < n; i++)
value += cost[i][Lmate[i]];
return value;
}
int n;
ii arr[1005];
ii brr[2005];
ll sq(ll i){
return i*i;
}
ll dist(int i,int j){
return sq(arr[i].fi-brr[j].fi)+sq(arr[i].se-brr[j].se);
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin.exceptions(ios::badbit | ios::failbit);
cin>>n;
rep(x,0,n) cin>>arr[x].fi>>arr[x].se;
rep(x,0,2*n) cin>>brr[x].fi>>brr[x].se;
VVD cost;
rep(x,0,2*n){
cost.pub(VD());
rep(y,0,2*n) cost[x].pub(dist(x%n,y));
}
VI l,r;
MinCostMatching(cost,l,r);
rep(x,0,n) cout<<l[x]+1<<" "<<l[x+n]+1<<endl;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
204 KB |
Output is correct |
2 |
Correct |
1 ms |
204 KB |
Output is correct |
3 |
Correct |
1 ms |
204 KB |
Output is correct |
4 |
Incorrect |
1 ms |
204 KB |
Output isn't correct |
5 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
6 ms |
620 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
204 KB |
Output is correct |
2 |
Correct |
1 ms |
204 KB |
Output is correct |
3 |
Correct |
1 ms |
204 KB |
Output is correct |
4 |
Incorrect |
1 ms |
204 KB |
Output isn't correct |
5 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
204 KB |
Output is correct |
2 |
Correct |
1 ms |
204 KB |
Output is correct |
3 |
Correct |
1 ms |
204 KB |
Output is correct |
4 |
Incorrect |
1 ms |
204 KB |
Output isn't correct |
5 |
Halted |
0 ms |
0 KB |
- |