Submission #402276

#TimeUsernameProblemLanguageResultExecution timeMemory
402276KoDBubble Sort 2 (JOI18_bubblesort2)C++17
100 / 100
2836 ms73188 KiB
#include <bits/stdc++.h> #include "bubblesort2.h" using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; using i128 = __int128_t; using u128 = __uint128_t; using isize = std::ptrdiff_t; using usize = std::size_t; class rep { struct Iter { usize itr; constexpr Iter(const usize pos) noexcept : itr(pos) {} constexpr void operator++() noexcept { ++itr; } constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; } constexpr usize operator*() const noexcept { return itr; } }; const Iter first, last; public: explicit constexpr rep(const usize first, const usize last) noexcept : first(first), last(std::max(first, last)) {} constexpr Iter begin() const noexcept { return first; } constexpr Iter end() const noexcept { return last; } }; template <class T, T Div = 2> constexpr T INFTY = std::numeric_limits<T>::max() / Div; class revrep { struct Iter { usize itr; constexpr Iter(const usize pos) noexcept : itr(pos) {} constexpr void operator++() noexcept { --itr; } constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; } constexpr usize operator*() const noexcept { return itr; } }; const Iter first, last; public: explicit constexpr revrep(const usize first, const usize last) noexcept : first(last - 1), last(std::min(first, last) - 1) {} constexpr Iter begin() const noexcept { return first; } constexpr Iter end() const noexcept { return last; } }; constexpr u64 ceil_log2(const u64 x) { u64 e = 0; while (((u64)1 << e) < x) ++e; return e; } constexpr u64 bit_rzeros(const u64 x) { return x == 0 ? 64 : __builtin_ctzll(x); } template <class Monoid, class Effector> class LazySegmentTree { using M = Monoid; using E = Effector; usize internal_size, logn, seg_size; std::vector<M> data; std::vector<E> lazy; void fetch(const usize k) { data[k] = data[2 * k] + data[2 * k + 1]; } void apply(const usize k, const E& e) { data[k] = data[k] * e; if (k < seg_size) lazy[k] = lazy[k] * e; } void flush(const usize k) { apply(2 * k, lazy[k]); apply(2 * k + 1, lazy[k]); lazy[k] = E::one(); } void push(const usize k) { for (const usize d : revrep(bit_rzeros(k) + 1, logn + 1)) flush(k >> d); } void pull(usize k) { for (k >>= bit_rzeros(k); k > 1;) fetch(k >>= 1); } public: explicit LazySegmentTree(const usize size = 0, const M& value = M::zero()) : LazySegmentTree(std::vector<M>(size, value)) {} explicit LazySegmentTree(const std::vector<M>& vec) : internal_size(vec.size()) { logn = ceil_log2(internal_size); seg_size = 1 << logn; data = std::vector<M>(2 * seg_size, M::zero()); lazy = std::vector<E>(seg_size, E::one()); for (const usize i : rep(0, internal_size)) data[seg_size + i] = vec[i]; for (const usize i : revrep(1, seg_size)) fetch(i); } usize size() const { return internal_size; } void assign(usize i, const M& value) { assert(i < internal_size); i += seg_size; for (const usize d : revrep(1, logn + 1)) flush(i >> d); data[i] = value; for (const usize d : rep(1, logn + 1)) fetch(i >> d); } void operate(usize l, usize r, const E& e) { assert(l <= r and r <= internal_size); l += seg_size; r += seg_size; push(l); push(r); for (usize l0 = l, r0 = r; l0 < r0; l0 >>= 1, r0 >>= 1) { if (l0 & 1) apply(l0++, e); if (r0 & 1) apply(--r0, e); } pull(l); pull(r); } M fold() const { return data[1]; } M fold(usize l, usize r) { assert(l <= r and r <= internal_size); l += seg_size; r += seg_size; push(l); push(r); M ret_l = M::zero(), ret_r = M::zero(); while (l < r) { if (l & 1) ret_l = ret_l + data[l++]; if (r & 1) ret_r = data[--r] + ret_r; l >>= 1; r >>= 1; } return ret_l + ret_r; } template <class F> usize max_right(usize l, const F& f) { assert(l <= internal_size); assert(f(M::zero())); if (l == internal_size) return internal_size; l += seg_size; for (const usize d : revrep(1, logn + 1)) flush(l >> d); M sum = M::zero(); do { while (!(l & 1)) l >>= 1; if (!f(sum + data[l])) { while (l < seg_size) { flush(l); l = 2 * l; if (f(sum + data[l])) sum = sum + data[l++]; } return l - seg_size; } sum = sum + data[l++]; } while ((l & -l) != l); return internal_size; } template <class F> usize min_left(usize r, const F& f) { assert(r <= internal_size); assert(f(M::zero())); if (r == 0) return 0; r += seg_size; for (const usize d : revrep(1, logn + 1)) flush((r - 1) >> d); M sum = M::zero(); do { r -= 1; while (r > 1 and (r & 1)) r >>= 1; if (!f(data[r] + sum)) { while (r < seg_size) { flush(r); r = 2 * r + 1; if (f(data[r] + sum)) sum = data[r--] + sum; } return r + 1 - seg_size; } sum = data[r] + sum; } while ((r & -r) != r); return 0; } }; template <class T> class FenwickTree { usize logn; std::vector<T> data; public: explicit FenwickTree(const usize size = 0) { logn = ceil_log2(size + 1) - 1; data = std::vector<T>(size + 1, T(0)); } usize size() const { return data.size() - 1; } void add(usize i, const T& x) { assert(i < size()); i += 1; while (i < data.size()) { data[i] += x; i += i & -i; } } void subtract(usize i, const T& x) { assert(i < size()); i += 1; while (i < data.size()) { data[i] -= x; i += i & -i; } } T fold(usize l, usize r) const { assert(l <= r and r <= size()); T ret(0); while (l < r) { ret += data[r]; r -= r & -r; } while (r < l) { ret -= data[l]; l -= l & -l; } return ret; } template <class F> usize max_right(const F& f) const { assert(f(T(0))); usize i = 0; T sum(0); for (usize k = (1 << logn); k > 0; k >>= 1) { if (i + k <= size() && f(sum + data[i + k])) { i += k; sum += data[i]; } } return i; } }; template <class T> using Vec = std::vector<T>; template <class T> isize lowb(const Vec<T>& vec, const T& x) { return std::lower_bound(vec.cbegin(), vec.cend(), x) - vec.cbegin(); } struct Mn { isize max; static Mn zero() { return Mn{-INFTY<isize>}; } Mn operator+(const Mn other) const { return Mn{std::max(max, other.max)}; } }; struct Ef { isize add; static Ef one() { return Ef{0}; } Ef operator*(const Ef& other) const { return Ef{add + other.add}; } }; Mn operator*(const Mn& m, const Ef& e) { return Mn{m.max + e.add}; } Vec<int> countScans(Vec<int> A, Vec<int> X, Vec<int> V) { const auto N = A.size(); const auto Q = X.size(); Vec<std::pair<int, int>> cmp; cmp.reserve(N + Q); for (const auto i : rep(0, N)) { cmp.emplace_back(A[i], i); } for (const auto i : rep(0, Q)) { cmp.emplace_back(V[i], X[i]); } std::sort(cmp.begin(), cmp.end()); const auto L = cmp.size(); FenwickTree<isize> fen(L); for (const auto i : rep(0, N)) { fen.add(lowb(cmp, std::pair<int, int>(A[i], i)), 1); } LazySegmentTree<Mn, Ef> seg(L); for (const auto i : rep(0, N)) { const auto c = fen.fold(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0))); seg.assign(lowb(cmp, std::pair<int, int>(A[i], i)), Mn{(int)i + 1 - c}); } Vec<int> ret(Q); for (const auto q : rep(0, Q)) { const auto i = X[q]; const auto x = V[q]; fen.add(lowb(cmp, std::pair<int, int>(A[i], i)), -1); seg.operate(lowb(cmp, std::pair<int, int>(A[i], 0)), L, Ef{1}); seg.assign(lowb(cmp, std::pair<int, int>(A[i], i)), Mn::zero()); A[i] = x; fen.add(lowb(cmp, std::pair<int, int>(A[i], i)), 1); const auto c = fen.fold(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0))); seg.operate(lowb(cmp, std::pair<int, int>(A[i], 0)), L, Ef{-1}); seg.assign(lowb(cmp, std::pair<int, int>(A[i], i)), Mn{i + 1 - c}); ret[q] = seg.fold().max; } return ret; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...