Submission #402273

# Submission time Handle Problem Language Result Execution time Memory
402273 2021-05-11T13:49:01 Z KoD Bubble Sort 2 (JOI18_bubblesort2) C++17
0 / 100
23 ms 1996 KB
#include <bits/stdc++.h>
#include "bubblesort2.h"

using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;

class rep {
    struct Iter {
        usize itr;
        constexpr Iter(const usize pos) noexcept : itr(pos) {}
        constexpr void operator++() noexcept { ++itr; }
        constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
        constexpr usize operator*() const noexcept { return itr; }
    };
    const Iter first, last;

  public:
    explicit constexpr rep(const usize first, const usize last) noexcept : first(first), last(std::max(first, last)) {}
    constexpr Iter begin() const noexcept { return first; }
    constexpr Iter end() const noexcept { return last; }
};

template <class T, T Div = 2> constexpr T INFTY = std::numeric_limits<T>::max() / Div;

class revrep {
    struct Iter {
        usize itr;
        constexpr Iter(const usize pos) noexcept : itr(pos) {}
        constexpr void operator++() noexcept { --itr; }
        constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
        constexpr usize operator*() const noexcept { return itr; }
    };
    const Iter first, last;

  public:
    explicit constexpr revrep(const usize first, const usize last) noexcept
        : first(last - 1), last(std::min(first, last) - 1) {}
    constexpr Iter begin() const noexcept { return first; }
    constexpr Iter end() const noexcept { return last; }
};

constexpr u64 ceil_log2(const u64 x) {
    u64 e = 0;
    while (((u64)1 << e) < x) ++e;
    return e;
}

constexpr u64 bit_rzeros(const u64 x) { return x == 0 ? 64 : __builtin_ctzll(x); }

template <class Monoid, class Effector> class LazySegmentTree {
    using M = Monoid;
    using E = Effector;
    usize internal_size, logn, seg_size;
    std::vector<M> data;
    std::vector<E> lazy;

    void fetch(const usize k) { data[k] = data[2 * k] + data[2 * k + 1]; }
    void apply(const usize k, const E& e) {
        data[k] = data[k] * e;
        if (k < seg_size) lazy[k] = lazy[k] * e;
    }
    void flush(const usize k) {
        apply(2 * k, lazy[k]);
        apply(2 * k + 1, lazy[k]);
        lazy[k] = E::one();
    }

    void push(const usize k) {
        for (const usize d : revrep(bit_rzeros(k) + 1, logn + 1)) flush(k >> d);
    }
    void pull(usize k) {
        for (k >>= bit_rzeros(k); k > 1;) fetch(k >>= 1);
    }

  public:
    explicit LazySegmentTree(const usize size = 0, const M& value = M::zero())
        : LazySegmentTree(std::vector<M>(size, value)) {}
    explicit LazySegmentTree(const std::vector<M>& vec) : internal_size(vec.size()) {
        logn = ceil_log2(internal_size);
        seg_size = 1 << logn;
        data = std::vector<M>(2 * seg_size, M::zero());
        lazy = std::vector<E>(seg_size, E::one());
        for (const usize i : rep(0, internal_size)) data[seg_size + i] = vec[i];
        for (const usize i : revrep(1, seg_size)) fetch(i);
    }

    usize size() const { return internal_size; }

    void assign(usize i, const M& value) {
        assert(i < internal_size);
        i += seg_size;
        for (const usize d : revrep(1, logn + 1)) flush(i >> d);
        data[i] = value;
        for (const usize d : rep(1, logn + 1)) fetch(i >> d);
    }
    void operate(usize l, usize r, const E& e) {
        assert(l <= r and r <= internal_size);
        l += seg_size;
        r += seg_size;
        push(l);
        push(r);
        for (usize l0 = l, r0 = r; l0 < r0; l0 >>= 1, r0 >>= 1) {
            if (l0 & 1) apply(l0++, e);
            if (r0 & 1) apply(--r0, e);
        }
        pull(l);
        pull(r);
    }

    M fold() const { return data[1]; }
    M fold(usize l, usize r) {
        assert(l <= r and r <= internal_size);
        l += seg_size;
        r += seg_size;
        push(l);
        push(r);
        M ret_l = M::zero(), ret_r = M::zero();
        while (l < r) {
            if (l & 1) ret_l = ret_l + data[l++];
            if (r & 1) ret_r = data[--r] + ret_r;
            l >>= 1;
            r >>= 1;
        }
        return ret_l + ret_r;
    }

    template <class F> usize max_right(usize l, const F& f) {
        assert(l <= internal_size);
        assert(f(M::zero()));
        if (l == internal_size) return internal_size;
        l += seg_size;
        for (const usize d : revrep(1, logn + 1)) flush(l >> d);
        M sum = M::zero();
        do {
            while (!(l & 1)) l >>= 1;
            if (!f(sum + data[l])) {
                while (l < seg_size) {
                    flush(l);
                    l = 2 * l;
                    if (f(sum + data[l])) sum = sum + data[l++];
                }
                return l - seg_size;
            }
            sum = sum + data[l++];
        } while ((l & -l) != l);
        return internal_size;
    }

    template <class F> usize min_left(usize r, const F& f) {
        assert(r <= internal_size);
        assert(f(M::zero()));
        if (r == 0) return 0;
        r += seg_size;
        for (const usize d : revrep(1, logn + 1)) flush((r - 1) >> d);
        M sum = M::zero();
        do {
            r -= 1;
            while (r > 1 and (r & 1)) r >>= 1;
            if (!f(data[r] + sum)) {
                while (r < seg_size) {
                    flush(r);
                    r = 2 * r + 1;
                    if (f(data[r] + sum)) sum = data[r--] + sum;
                }
                return r + 1 - seg_size;
            }
            sum = data[r] + sum;
        } while ((r & -r) != r);
        return 0;
    }
};

template <class T> class FenwickTree {
    usize logn;
    std::vector<T> data;

  public:
    explicit FenwickTree(const usize size = 0) {
        logn = ceil_log2(size + 1) - 1;
        data = std::vector<T>(size + 1, T(0));
    }

    usize size() const { return data.size() - 1; }

    void add(usize i, const T& x) {
        assert(i < size());
        i += 1;
        while (i < data.size()) {
            data[i] += x;
            i += i & -i;
        }
    }
    void subtract(usize i, const T& x) {
        assert(i < size());
        i += 1;
        while (i < data.size()) {
            data[i] -= x;
            i += i & -i;
        }
    }

    T fold(usize l, usize r) const {
        assert(l <= r and r <= size());
        T ret(0);
        while (l < r) {
            ret += data[r];
            r -= r & -r;
        }
        while (r < l) {
            ret -= data[l];
            l -= l & -l;
        }
        return ret;
    }

    template <class F> usize max_right(const F& f) const {
        assert(f(T(0)));
        usize i = 0;
        T sum(0);
        for (usize k = (1 << logn); k > 0; k >>= 1) {
            if (i + k <= size() && f(sum + data[i + k])) {
                i += k;
                sum += data[i];
            }
        }
        return i;
    }
};

template <class T> using Vec = std::vector<T>;

template <class T> isize lowb(const Vec<T>& vec, const T& x) {
    return std::lower_bound(vec.cbegin(), vec.cend(), x) - vec.cbegin();
}

struct Mn {
    isize max;
    static Mn zero() { return Mn{-INFTY<isize>}; }
    Mn operator+(const Mn other) const { return Mn{std::max(max, other.max)}; }
};

struct Ef {
    isize add;
    static Ef one() { return Ef{0}; }
    Ef operator*(const Ef& other) const { return Ef{add + other.add}; }
};

Mn operator*(const Mn& m, const Ef& e) { return Mn{m.max + e.add}; }

Vec<int> countScans(Vec<int> A, Vec<int> X, Vec<int> V) {
    const auto N = A.size();
    const auto Q = X.size();
    Vec<std::pair<int, int>> cmp;
    cmp.reserve(N + Q);
    for (const auto i : rep(0, N)) {
        cmp.emplace_back(A[i], i);
    }
    for (const auto i : rep(0, Q)) {
        cmp.emplace_back(V[i], X[i]);
    }
    std::sort(cmp.begin(), cmp.end());
    const auto L = cmp.size();
    FenwickTree<isize> fen(L);
    for (const auto i : rep(0, N)) {
        fen.add(lowb(cmp, std::pair<int, int>(A[i], i)), 1);
    }
    LazySegmentTree<Mn, Ef> seg(L);
    for (const auto i : rep(0, N)) {
        const auto c = fen.fold(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0)));
        seg.assign(lowb(cmp, std::pair<int, int>(A[i], i)), Mn{(int)i - c});
    }
    Vec<int> ret(Q);
    for (const auto q : rep(0, Q)) {
        const auto i = X[q];
        const auto x = V[q];
        fen.add(lowb(cmp, std::pair<int, int>(A[i], i)), -1);
        seg.operate(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0)), Ef{1});
        seg.assign(lowb(cmp, std::pair<int, int>(A[i], i)), Mn::zero());
        A[i] = x;
        fen.add(lowb(cmp, std::pair<int, int>(A[i], i)), 1);
        const auto c = fen.fold(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0)));
        seg.operate(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0)), Ef{-1});
        seg.assign(lowb(cmp, std::pair<int, int>(A[i], i)), Mn{i - c});
        ret[q] = seg.fold().max;
    }
    return ret;
}
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 332 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 332 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 23 ms 1996 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 332 KB Output isn't correct
2 Halted 0 ms 0 KB -