This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
#include "bubblesort2.h"
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;
class rep {
struct Iter {
usize itr;
constexpr Iter(const usize pos) noexcept : itr(pos) {}
constexpr void operator++() noexcept { ++itr; }
constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
constexpr usize operator*() const noexcept { return itr; }
};
const Iter first, last;
public:
explicit constexpr rep(const usize first, const usize last) noexcept : first(first), last(std::max(first, last)) {}
constexpr Iter begin() const noexcept { return first; }
constexpr Iter end() const noexcept { return last; }
};
template <class T, T Div = 2> constexpr T INFTY = std::numeric_limits<T>::max() / Div;
class revrep {
struct Iter {
usize itr;
constexpr Iter(const usize pos) noexcept : itr(pos) {}
constexpr void operator++() noexcept { --itr; }
constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
constexpr usize operator*() const noexcept { return itr; }
};
const Iter first, last;
public:
explicit constexpr revrep(const usize first, const usize last) noexcept
: first(last - 1), last(std::min(first, last) - 1) {}
constexpr Iter begin() const noexcept { return first; }
constexpr Iter end() const noexcept { return last; }
};
constexpr u64 ceil_log2(const u64 x) {
u64 e = 0;
while (((u64)1 << e) < x) ++e;
return e;
}
constexpr u64 bit_rzeros(const u64 x) { return x == 0 ? 64 : __builtin_ctzll(x); }
template <class Monoid, class Effector> class LazySegmentTree {
using M = Monoid;
using E = Effector;
usize internal_size, logn, seg_size;
std::vector<M> data;
std::vector<E> lazy;
void fetch(const usize k) { data[k] = data[2 * k] + data[2 * k + 1]; }
void apply(const usize k, const E& e) {
data[k] = data[k] * e;
if (k < seg_size) lazy[k] = lazy[k] * e;
}
void flush(const usize k) {
apply(2 * k, lazy[k]);
apply(2 * k + 1, lazy[k]);
lazy[k] = E::one();
}
void push(const usize k) {
for (const usize d : revrep(bit_rzeros(k) + 1, logn + 1)) flush(k >> d);
}
void pull(usize k) {
for (k >>= bit_rzeros(k); k > 1;) fetch(k >>= 1);
}
public:
explicit LazySegmentTree(const usize size = 0, const M& value = M::zero())
: LazySegmentTree(std::vector<M>(size, value)) {}
explicit LazySegmentTree(const std::vector<M>& vec) : internal_size(vec.size()) {
logn = ceil_log2(internal_size);
seg_size = 1 << logn;
data = std::vector<M>(2 * seg_size, M::zero());
lazy = std::vector<E>(seg_size, E::one());
for (const usize i : rep(0, internal_size)) data[seg_size + i] = vec[i];
for (const usize i : revrep(1, seg_size)) fetch(i);
}
usize size() const { return internal_size; }
void assign(usize i, const M& value) {
assert(i < internal_size);
i += seg_size;
for (const usize d : revrep(1, logn + 1)) flush(i >> d);
data[i] = value;
for (const usize d : rep(1, logn + 1)) fetch(i >> d);
}
void operate(usize l, usize r, const E& e) {
assert(l <= r and r <= internal_size);
l += seg_size;
r += seg_size;
push(l);
push(r);
for (usize l0 = l, r0 = r; l0 < r0; l0 >>= 1, r0 >>= 1) {
if (l0 & 1) apply(l0++, e);
if (r0 & 1) apply(--r0, e);
}
pull(l);
pull(r);
}
M fold() const { return data[1]; }
M fold(usize l, usize r) {
assert(l <= r and r <= internal_size);
l += seg_size;
r += seg_size;
push(l);
push(r);
M ret_l = M::zero(), ret_r = M::zero();
while (l < r) {
if (l & 1) ret_l = ret_l + data[l++];
if (r & 1) ret_r = data[--r] + ret_r;
l >>= 1;
r >>= 1;
}
return ret_l + ret_r;
}
template <class F> usize max_right(usize l, const F& f) {
assert(l <= internal_size);
assert(f(M::zero()));
if (l == internal_size) return internal_size;
l += seg_size;
for (const usize d : revrep(1, logn + 1)) flush(l >> d);
M sum = M::zero();
do {
while (!(l & 1)) l >>= 1;
if (!f(sum + data[l])) {
while (l < seg_size) {
flush(l);
l = 2 * l;
if (f(sum + data[l])) sum = sum + data[l++];
}
return l - seg_size;
}
sum = sum + data[l++];
} while ((l & -l) != l);
return internal_size;
}
template <class F> usize min_left(usize r, const F& f) {
assert(r <= internal_size);
assert(f(M::zero()));
if (r == 0) return 0;
r += seg_size;
for (const usize d : revrep(1, logn + 1)) flush((r - 1) >> d);
M sum = M::zero();
do {
r -= 1;
while (r > 1 and (r & 1)) r >>= 1;
if (!f(data[r] + sum)) {
while (r < seg_size) {
flush(r);
r = 2 * r + 1;
if (f(data[r] + sum)) sum = data[r--] + sum;
}
return r + 1 - seg_size;
}
sum = data[r] + sum;
} while ((r & -r) != r);
return 0;
}
};
template <class T> class FenwickTree {
usize logn;
std::vector<T> data;
public:
explicit FenwickTree(const usize size = 0) {
logn = ceil_log2(size + 1) - 1;
data = std::vector<T>(size + 1, T(0));
}
usize size() const { return data.size() - 1; }
void add(usize i, const T& x) {
assert(i < size());
i += 1;
while (i < data.size()) {
data[i] += x;
i += i & -i;
}
}
void subtract(usize i, const T& x) {
assert(i < size());
i += 1;
while (i < data.size()) {
data[i] -= x;
i += i & -i;
}
}
T fold(usize l, usize r) const {
assert(l <= r and r <= size());
T ret(0);
while (l < r) {
ret += data[r];
r -= r & -r;
}
while (r < l) {
ret -= data[l];
l -= l & -l;
}
return ret;
}
template <class F> usize max_right(const F& f) const {
assert(f(T(0)));
usize i = 0;
T sum(0);
for (usize k = (1 << logn); k > 0; k >>= 1) {
if (i + k <= size() && f(sum + data[i + k])) {
i += k;
sum += data[i];
}
}
return i;
}
};
template <class T> using Vec = std::vector<T>;
template <class T> isize lowb(const Vec<T>& vec, const T& x) {
return std::lower_bound(vec.cbegin(), vec.cend(), x) - vec.cbegin();
}
struct Mn {
isize max;
static Mn zero() { return Mn{-INFTY<isize>}; }
Mn operator+(const Mn other) const { return Mn{std::max(max, other.max)}; }
};
struct Ef {
isize add;
static Ef one() { return Ef{0}; }
Ef operator*(const Ef& other) const { return Ef{add + other.add}; }
};
Mn operator*(const Mn& m, const Ef& e) { return Mn{m.max + e.add}; }
Vec<int> countScans(Vec<int> A, Vec<int> X, Vec<int> V) {
const auto N = A.size();
const auto Q = X.size();
Vec<std::pair<int, int>> cmp;
cmp.reserve(N + Q);
for (const auto i : rep(0, N)) {
cmp.emplace_back(A[i], i);
}
for (const auto i : rep(0, Q)) {
cmp.emplace_back(V[i], X[i]);
}
std::sort(cmp.begin(), cmp.end());
const auto L = cmp.size();
FenwickTree<isize> fen(L);
for (const auto i : rep(0, N)) {
fen.add(lowb(cmp, std::pair<int, int>(A[i], i)), 1);
}
LazySegmentTree<Mn, Ef> seg(L);
for (const auto i : rep(0, N)) {
const auto c = fen.fold(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0)));
seg.assign(lowb(cmp, std::pair<int, int>(A[i], i)), Mn{(int)i - c});
}
Vec<int> ret(Q);
for (const auto q : rep(0, Q)) {
const auto i = X[q];
const auto x = V[q];
fen.add(lowb(cmp, std::pair<int, int>(A[i], i)), -1);
seg.operate(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0)), Ef{1});
seg.assign(lowb(cmp, std::pair<int, int>(A[i], i)), Mn::zero());
A[i] = x;
fen.add(lowb(cmp, std::pair<int, int>(A[i], i)), 1);
const auto c = fen.fold(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0)));
seg.operate(0, lowb(cmp, std::pair<int, int>(A[i] + 1, 0)), Ef{-1});
seg.assign(lowb(cmp, std::pair<int, int>(A[i], i)), Mn{i - c});
ret[q] = seg.fold().max;
}
return ret;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |