답안 #396339

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
396339 2021-04-29T19:17:58 Z MarcoMeijer Pyramid Base (IOI08_pyramid_base) C++14
100 / 100
3616 ms 156984 KB
#include <bits/stdc++.h>
using namespace std;
 
// macros
typedef unsigned int ui;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> ii;
typedef pair<ll, ll> lll;
typedef tuple<int, int, int> iii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vll;
typedef vector<lll> vlll;
#define REP(a,b,c) for(int a=int(b); a<int(c); a++)
#define RE(a,c) REP(a,0,c)
#define RE1(a,c) REP(a,1,c+1)
#define REI(a,b,c) REP(a,b,c+1)
#define REV(a,b,c) for(int a=int(c-1); a>=int(b); a--)
#define FOR(a,b) for(auto& a : b)
#define all(a) a.begin(), a.end()
#define INF (3e9+10)
#define EPS 1e-9
#define pb push_back
#define popb pop_back
#define fi first
#define se second
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
 
// input
template<class T> void IN(T& x) {cin >> x;}
template<class H, class... T> void IN(H& h, T&... t) {IN(h); IN(t...); }
 
// output
template<class T1, class T2> void OUT(const pair<T1,T2>& x);
template<class T> void OUT(const vector<T>& x);
template<class T> void OUT(const T& x) {cout << x;}
template<class H, class... T> void OUT(const H& h, const T&... t) {OUT(h); OUT(t...); }
template<class T1, class T2> void OUT(const pair<T1,T2>& x) {OUT(x.fi,' ',x.se);}
template<class T> void OUT(const vector<T>& x) {RE(i,x.size()) OUT(i==0?"":" ",x[i]);}
template<class... T> void OUTL(const T&... t) {OUT(t..., "\n"); }
template<class H> void OUTLS(const H& h) {OUTL(h); }
template<class H, class... T> void OUTLS(const H& h, const T&... t) {OUT(h,' '); OUTLS(t...); }
 
// dp
template<class T> bool ckmin(T&a, T&b) { bool bl = a > b; a = min(a,b); return bl;}
template<class T> bool ckmax(T&a, T&b) { bool bl = a < b; a = max(a,b); return bl;}
 
void program();
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
    program();
}
 
 
//===================//
//   begin program   //
//===================//
 
const int MX = 1e6;
const int N = (1<<21);

int n, m, p; ui b;
int c[MX], X1[MX], X2[MX], Y1[MX], Y2[MX];

// segment tree
ui SEG[N*2], LAZ[N*2];
void addSeg(int i, int j, ui v, ui lazy=0, int l=0, int r=N-1, int p=1) {
    SEG[p] += lazy;
    LAZ[p] += lazy;
    if(j < l || i > r) return;
    if(i <= l && j >= r) {
        SEG[p] += v;
        LAZ[p] += v;
        return;
    }
    int m=(l+r)/2;
    addSeg(i,j,v,LAZ[p],l  ,m,p*2  );
    addSeg(i,j,v,LAZ[p],m+1,r,p*2+1);
    LAZ[p] = 0;
    SEG[p] = min(SEG[p*2], SEG[p*2+1]);
}
ui getSeg(int i, int j, ui lazy=0, int l=0, int r=N-1, int p=1) {
    SEG[p] += lazy;
    LAZ[p] += lazy;
    if(j < l || i > r) return INF;
    if(i <= l && j >= r) return SEG[p];
    int m=(l+r)/2;
    ui a=getSeg(i,j,LAZ[p],l  ,m,p*2  );
    ui b=getSeg(i,j,LAZ[p],m+1,r,p*2+1);
    LAZ[p] = 0;
    return min(a,b);
}

typedef tuple<int, int, int, int> iiii;
typedef vector<iiii> viiii;

bool possible(int w) {
    RE(i,p) X1[i] -= w-1;
    RE(i,p) Y1[i] -= w-1;

    // fill pq
    viiii pq;
    RE(i,p) {
        pq.pb({max(0,X1[i]  ),-c[i],max(0,Y1[i]),Y2[i]});
        pq.pb({max(0,X2[i]+1), c[i],max(0,Y1[i]),Y2[i]});
    }
    sort(all(pq));
    
    // clear segment tree
    RE(i,N*2) SEG[i]=LAZ[i]=0;

    int cx, lbY, ubY, cost, nextX, _;
    tie(cx, cost, lbY, ubY) = pq[0];
    if(cx > 0) {
        RE(i,p) X1[i] += w-1;
        RE(i,p) Y1[i] += w-1;
        return 0;
    }

    // sweep line
    RE(i,pq.size()) {
        tie(cx, cost, lbY, ubY) = pq[i];
        cost = -cost;
        if(i != pq.size()-1)
            tie(nextX, _, _, _) = pq[i+1];
        addSeg(lbY, ubY, cost);

        if((i == pq.size()-1 || nextX != 0) && cx <= m-w) {
            if(getSeg(0,n-w) <= b) {
                RE(i,p) X1[i] += w-1;
                RE(i,p) Y1[i] += w-1;
                return true;
            }
        }
    }

    RE(i,p) X1[i] += w-1;
    RE(i,p) Y1[i] += w-1;
    return false;
}

// other segment tree
int LEN[N*2], MIN[N*2], MAX[N*2], PREMIN[N*2], SUFMIN[N*2], PRELEN[N*2], SUFLEN[N*2], LAZY[N*2];
void buildSeg2(int l=0, int r=N-1, int p=1) {
    LAZY  [p] = 0;
    if(l == r) {
        LEN[p] = PREMIN[p] = PRELEN[p] = SUFMIN[p] = SUFLEN[p] = MIN[p] = MAX[p] = 1;
        return;
    }

    int m=(l+r)/2;
    buildSeg2(l  ,m,p*2  );
    buildSeg2(m+1,r,p*2+1);

    MIN   [p] = min(MIN[p*2], MIN[p*2+1]);
    MAX   [p] = max(MAX[p*2], MAX[p*2+1]);
    if(MIN[p*2] == MIN[p*2+1]) LEN[p] = max(LEN[p*2], LEN[p*2+1]);
    else LEN[p] = MIN[p*2] < MIN[p*2+1] ? LEN[p*2] : LEN[p*2+1];
    if(SUFMIN[p*2] == MIN[p] && PREMIN[p*2+1] == MIN[p]) LEN[p] = max(LEN[p], SUFLEN[p*2]+PRELEN[p*2+1]);

    // prefix
    PREMIN[p] = PREMIN[p*2];
    PRELEN[p] = PRELEN[p*2];
    if(MAX[p*2] == PREMIN[p*2] && PREMIN[p*2] == PREMIN[p*2+1]) PRELEN[p] = PRELEN[p*2] + PRELEN[p*2+1];

    // suffix
    SUFMIN[p] = SUFMIN[p*2+1];
    SUFLEN[p] = SUFLEN[p*2+1];
    if(MAX[p*2+1] == SUFMIN[p*2+1] && SUFMIN[p*2+1] == SUFMIN[p*2]) SUFLEN[p] = SUFLEN[p*2] + SUFLEN[p*2+1];
}
void addSeg2(int i, int j, int v, int lazy=0, int l=0, int r=N-1, int p=1) {
    PREMIN[p] += lazy;
    SUFMIN[p] += lazy;
    MIN   [p] += lazy;
    MAX   [p] += lazy;
    LAZY  [p] += lazy;
    if(j < l || i > r) return;
    if(i <= l && j >= r) {
        PREMIN[p] += v;
        SUFMIN[p] += v;
        MIN   [p] += v;
        MAX   [p] += v;
        LAZY  [p] += v;
        return;
    }
    int m=(l+r)/2;
    addSeg2(i,j,v,LAZY[p],l  ,m,p*2  );
    addSeg2(i,j,v,LAZY[p],m+1,r,p*2+1);
    LAZY  [p] = 0;

    MIN   [p] = min(MIN[p*2], MIN[p*2+1]);
    MAX   [p] = max(MAX[p*2], MAX[p*2+1]);
    if(MIN[p*2] == MIN[p*2+1]) LEN[p] = max(LEN[p*2], LEN[p*2+1]);
    else LEN[p] = MIN[p*2] < MIN[p*2+1] ? LEN[p*2] : LEN[p*2+1];
    if(SUFMIN[p*2] == MIN[p] && PREMIN[p*2+1] == MIN[p]) LEN[p] = max(LEN[p], SUFLEN[p*2]+PRELEN[p*2+1]);

    // prefix
    PREMIN[p] = PREMIN[p*2];
    PRELEN[p] = PRELEN[p*2];
    if(MAX[p*2] == PREMIN[p*2] && PREMIN[p*2] == PREMIN[p*2+1]) PRELEN[p] = PRELEN[p*2] + PRELEN[p*2+1];

    // suffix
    SUFMIN[p] = SUFMIN[p*2+1];
    SUFLEN[p] = SUFLEN[p*2+1];
    if(MAX[p*2+1] == SUFMIN[p*2+1] && SUFMIN[p*2+1] == SUFMIN[p*2]) SUFLEN[p] = SUFLEN[p*2] + SUFLEN[p*2+1];
}

int solveZero() {
    buildSeg2();
    addSeg2(0,n-1,-1);

    priority_queue<ii,vii,greater<ii>> pqCreate, pqDestroy;
    RE(i,p) {
        pqCreate .push({X1[i],i});
        pqDestroy.push({X2[i],i});
    }

    int res=0;
    int r=0;
    while(!pqCreate.empty()) {
        ii p = pqCreate.top();
        if(p.fi > r) break;
        pqCreate.pop();
        addSeg2(Y1[p.se], Y2[p.se], 1);
    }
    RE(l,m) {
        while(!pqDestroy.empty()) {
            ii p = pqDestroy.top();
            if(p.fi >= l) break;
            pqDestroy.pop();
            addSeg2(Y1[p.se], Y2[p.se], -1);
        }

        while(r < l || (r!=m-1 && MIN[1] == 0 && LEN[1] >= r-l+1)) {
            if(MIN[1] == 0 && LEN[1] >= r-l+1)
                res = max(res, r-l+1);
            r++;
            while(!pqCreate.empty()) {
                ii p = pqCreate.top();
                if(p.fi > r) break;
                pqCreate.pop();
                addSeg2(Y1[p.se], Y2[p.se], 1);
            }
        }
        if(MIN[1] == 0)
            res = max(res, min(r-l+1, LEN[1]));
    }

    return res;
}

void program() {
    IN(m,n,b,p);
    RE(i,p) IN(X1[i],Y1[i],X2[i],Y2[i],c[i]);
    RE(i,p) X1[i]--, Y1[i]--, X2[i]--, Y2[i]--;

    if(b == 0) {
        OUTL(solveZero());
    } else {
        int lb=0, ub=min(n,m);
        while(lb != ub) {
            int mid=(lb+ub+1)/2;
            if(possible(mid)) lb=mid;
            else ub=mid-1;
        }
        OUTL(lb);
    }
}

Compilation message

pyramid_base.cpp: In function 'bool possible(int)':
pyramid_base.cpp:128:14: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::tuple<int, int, int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  128 |         if(i != pq.size()-1)
      |            ~~^~~~~~~~~~~~~~
pyramid_base.cpp:132:15: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::tuple<int, int, int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  132 |         if((i == pq.size()-1 || nextX != 0) && cx <= m-w) {
      |             ~~^~~~~~~~~~~~~~
pyramid_base.cpp:132:30: warning: 'nextX' may be used uninitialized in this function [-Wmaybe-uninitialized]
  132 |         if((i == pq.size()-1 || nextX != 0) && cx <= m-w) {
      |            ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 171 ms 131640 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 175 ms 131572 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 192 ms 131708 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 191 ms 131652 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 181 ms 131680 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 212 ms 131636 KB Output is correct
2 Correct 220 ms 131724 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 188 ms 131668 KB Output is correct
2 Correct 211 ms 131728 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 133 ms 33680 KB Output is correct
2 Correct 201 ms 33860 KB Output is correct
3 Correct 185 ms 33704 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 490 ms 34472 KB Output is correct
2 Correct 681 ms 34460 KB Output is correct
3 Correct 615 ms 34468 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 647 ms 35248 KB Output is correct
2 Correct 130 ms 35240 KB Output is correct
3 Correct 262 ms 35200 KB Output is correct
4 Correct 859 ms 35228 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 991 ms 35592 KB Output is correct
2 Correct 1505 ms 35524 KB Output is correct
3 Correct 772 ms 35596 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1093 ms 35816 KB Output is correct
2 Correct 1986 ms 35916 KB Output is correct
3 Correct 1872 ms 35792 KB Output is correct
4 Correct 2007 ms 35768 KB Output is correct
5 Correct 2009 ms 35956 KB Output is correct
6 Correct 887 ms 35732 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1699 ms 138952 KB Output is correct
2 Correct 968 ms 138956 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2249 ms 143864 KB Output is correct
2 Correct 2346 ms 143912 KB Output is correct
3 Correct 1485 ms 151796 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2873 ms 145980 KB Output is correct
2 Correct 3442 ms 145932 KB Output is correct
3 Correct 3616 ms 145968 KB Output is correct
4 Correct 3098 ms 156872 KB Output is correct
5 Correct 1952 ms 156984 KB Output is correct