Submission #395138

# Submission time Handle Problem Language Result Execution time Memory
395138 2021-04-27T21:26:38 Z arwaeystoamneg Fortune Telling 2 (JOI14_fortune_telling2) C++17
100 / 100
332 ms 17944 KB
// EXPLOSION!
#define _CRT_SECURE_NO_WARNINGS
#include<bits/stdc++.h>
#include<unordered_set>
#include<unordered_map>
#include<chrono>

using namespace std;
typedef pair<int, int> pii;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef long double ld;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pair<int, int>> vpi;
typedef vector<pair<ll, ll>> vpll;

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

#define pb push_back
#define mp make_pair
#define rsz resize
#define sz(x) int(x.size())
#define all(x) x.begin(),x.end()
#define f first
#define s second
#define cont continue
#define endl '\n'
//#define ednl '\n'
#define test int testc;cin>>testc;while(testc--)
#define pr(a, b) trav(x,a)cerr << x << b; cerr << endl;
#define message cout << "Hello World" << endl;
const int dx[4] = { 1,0,-1,0 }, dy[4] = { 0,1,0,-1 }; // for every grid problem!!
const ll linf = 4000000000000000000LL;
const ll inf = 1000000007;//998244353    

void pv(vi a) { trav(x, a)cout << x << " "; cout << endl; }void pv(vll a) { trav(x, a)cout << x << " "; cout << endl; }void pv(vector<vi>a) {
	F0R(i, sz(a)) { cout << i << endl; pv(a[i]); cout << endl; }
}void pv(vector<vll>a) { F0R(i, sz(a)) { cout << i << endl; pv(a[i]); }cout << endl; }void pv(vector<string>a) { trav(x, a)cout << x << endl; cout << endl; }
void setIO(string s) {
	ios_base::sync_with_stdio(0); cin.tie(0);
#ifdef arwaeystoamneg
	if (sz(s))
	{
		freopen((s + ".in").c_str(), "r", stdin);
		if (s != "test1")
			freopen((s + ".out").c_str(), "w", stdout);
	}
#endif
}

template<class T>class segment_tree
{
	struct item
	{
		T sum;
	};
	item single(T i)
	{
		return { i };
	}
	item merge(item x, item y)
	{
		item ans;
		ans.sum = x.sum + y.sum;
		return ans;
	}
	vector<item> tree;
	vector<item>A;
	int height;
	item neutral = { 0 };
public:void build(vector<T>& B)
{
	int	n = B.size();
	height = log2(n + 1) + 1;
	A.rsz(n);
	tree.rsz((1 << height + 1) - 1);
	F0R(i, n)A[i] = single(B[i]);
	A.rsz(1 << height, neutral);
	build(A, 0, 0, (1 << height) - 1);
}
	  void build(vector<item>& A, int v, int tl, int tr)
	  {
		  if (tl == tr)
			  tree[v] = A[tl];
		  else
		  {
			  int mid = (tl + tr) / 2;
			  build(A, 2 * v + 1, tl, mid);
			  build(A, 2 * v + 2, mid + 1, tr);
			  tree[v] = merge(tree[2 * v + 1], tree[2 * v + 2]);
		  }
	  }
public:T query(int l, int r)
{
	return query(0, 0, (1 << height) - 1, l, r).sum;
}
	  item query(int v, int tl, int tr, int l, int r)
	  {
		  if (r<tl || l>tr)return neutral;
		  if (l <= tl && r >= tr)
		  {
			  return tree[v];
		  }
		  int mid = (tl + tr) / 2;
		  return merge(query(2 * v + 1, tl, mid, l, r), query(2 * v + 2, mid + 1, tr, l, r));
	  }
	  //assign
public:void update(int pos, T val)
{
	update(0, 0, (1 << height) - 1, pos, single(val));
}
	  void update(int v, int tl, int tr, int pos, item val)
	  {
		  if (tl == tr)
		  {
			  tree[v] = val;
		  }
		  else
		  {
			  int mid = (tl + tr) / 2;
			  if (pos <= mid)
				  update(2 * v + 1, tl, mid, pos, val);
			  else
				  update(2 * v + 2, mid + 1, tr, pos, val);
			  tree[v] = merge(tree[2 * v + 1], tree[2 * v + 2]);
		  }
	  }
public:int get(int k)
{
	return get(0, 0, (1 << height) - 1, k);
}
	  int get(int v, int tl, int tr, int k)
	  {
		  if (tl == tr)return tl;
		  int mid = (tl + tr) / 2;
		  if (k > tree[2 * v + 1].sum)
			  return get(2 * v + 2, mid + 1, tr, k - tree[2 * v + 1].sum);
		  return get(2 * v + 1, tl, mid, k);
	  }
};
template<class T>class segment_tree1
{
	struct item
	{
		T sum;
	};
	item single(T i)
	{
		return { i };
	}
	item merge(item x, item y)
	{
		item ans;
		ans.sum = max(x.sum, y.sum);
		return ans;
	}
	vector<item> tree;
	vector<item>A;
	int height;
	item neutral = { -1 };
public:void build(vector<T>& B)
{
	int	n = B.size();
	height = log2(n + 1) + 1;
	A.rsz(n);
	tree.rsz((1 << height + 1) - 1);
	F0R(i, n)A[i] = single(B[i]);
	A.rsz(1 << height, neutral);
	build(A, 0, 0, (1 << height) - 1);
}
	  void build(vector<item>& A, int v, int tl, int tr)
	  {
		  if (tl == tr)
			  tree[v] = A[tl];
		  else
		  {
			  int mid = (tl + tr) / 2;
			  build(A, 2 * v + 1, tl, mid);
			  build(A, 2 * v + 2, mid + 1, tr);
			  tree[v] = merge(tree[2 * v + 1], tree[2 * v + 2]);
		  }
	  }
public:T query(int l, int r)
{
	return query(0, 0, (1 << height) - 1, l, r).sum;
}
	  item query(int v, int tl, int tr, int l, int r)
	  {
		  if (r<tl || l>tr)return neutral;
		  if (l <= tl && r >= tr)
		  {
			  return tree[v];
		  }
		  int mid = (tl + tr) / 2;
		  return merge(query(2 * v + 1, tl, mid, l, r), query(2 * v + 2, mid + 1, tr, l, r));
	  }
	  //assign
public:void update(int pos, T val)
{
	update(0, 0, (1 << height) - 1, pos, single(val));
}
	  void update(int v, int tl, int tr, int pos, item val)
	  {
		  if (tl == tr)
		  {
			  tree[v] = val;
		  }
		  else
		  {
			  int mid = (tl + tr) / 2;
			  if (pos <= mid)
				  update(2 * v + 1, tl, mid, pos, val);
			  else
				  update(2 * v + 2, mid + 1, tr, pos, val);
			  tree[v] = merge(tree[2 * v + 1], tree[2 * v + 2]);
		  }
	  }
public:int get(int k)
{
	return get(0, 0, (1 << height) - 1, k);
}
	  int get(int v, int tl, int tr, int k)
	  {
		  if (tl == tr)return tl;
		  int mid = (tl + tr) / 2;
		  if (k > tree[2 * v + 1].sum)
			  return get(2 * v + 2, mid + 1, tr, k - tree[2 * v + 1].sum);
		  return get(2 * v + 1, tl, mid, k);
	  }
};

const int MAX = 200005;
int n, k;
pii a[MAX];
int b[MAX];

int main() 
{
	setIO("test1");
	cin >> n >> k;
	F0R(i, n)cin >> a[i].f >> a[i].s;
	sort(a, a + n, [](pii c, pii d) {if (max(c.f, c.s) == max(d.f, d.s))return min(c.f, c.s) < min(d.f, d.s); return max(c.f, c.s) < max(d.f, d.s); });
	F0R(i, k)cin >> b[i];
	vpi t;
	F0R(i, k)t.pb({ b[i],i });
	sort(all(t));
	segment_tree<int>sum;
	vi temp(k);
	sum.build(temp);
	F0R(i, k)temp[i] = t[i].s;
	segment_tree1<int>last;
	last.build(temp);
	F0R(i, k)temp[i] = t[i].f;
	ll ans = 0;
	int p = k - 1;
	R0F(i, n)
	{
		int x = a[i].f, y = a[i].s;
		if (x > y)swap(x, y);
		while (p >= 0 && y <= temp[p])
		{
			sum.update(t[p].s, 1);
			p--;
		}
		int r = last.query(lower_bound(all(temp), x) - temp.begin(), upper_bound(all(temp), y - 1) - temp.begin() - 1);
		int v = 0;
		if (r == -1)
		{
			v = sum.query(0, k - 1);
			if (v & 1)ans += a[i].s;
			else ans += a[i].f;
		}
		else
		{
			v = sum.query(r + 1, k - 1);
			if (v & 1)ans += x;
			else ans += y;
		}
	}
	cout << ans << endl;
}

Compilation message

fortune_telling2.cpp: In instantiation of 'void segment_tree<T>::build(std::vector<_Tp>&) [with T = int]':
fortune_telling2.cpp:254:16:   required from here
fortune_telling2.cpp:81:24: warning: suggest parentheses around '+' inside '<<' [-Wparentheses]
   81 |  tree.rsz((1 << height + 1) - 1);
      |                 ~~~~~~~^~~
fortune_telling2.cpp: In instantiation of 'void segment_tree1<T>::build(std::vector<_Tp>&) [with T = int]':
fortune_telling2.cpp:257:17:   required from here
fortune_telling2.cpp:171:24: warning: suggest parentheses around '+' inside '<<' [-Wparentheses]
  171 |  tree.rsz((1 << height + 1) - 1);
      |                 ~~~~~~~^~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB Output is correct
2 Correct 1 ms 360 KB Output is correct
3 Correct 2 ms 332 KB Output is correct
4 Correct 2 ms 332 KB Output is correct
5 Correct 2 ms 372 KB Output is correct
6 Correct 2 ms 332 KB Output is correct
7 Correct 2 ms 380 KB Output is correct
8 Correct 2 ms 332 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 2 ms 332 KB Output is correct
11 Correct 2 ms 332 KB Output is correct
12 Correct 2 ms 332 KB Output is correct
13 Correct 2 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB Output is correct
2 Correct 1 ms 360 KB Output is correct
3 Correct 2 ms 332 KB Output is correct
4 Correct 2 ms 332 KB Output is correct
5 Correct 2 ms 372 KB Output is correct
6 Correct 2 ms 332 KB Output is correct
7 Correct 2 ms 380 KB Output is correct
8 Correct 2 ms 332 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 2 ms 332 KB Output is correct
11 Correct 2 ms 332 KB Output is correct
12 Correct 2 ms 332 KB Output is correct
13 Correct 2 ms 332 KB Output is correct
14 Correct 13 ms 1356 KB Output is correct
15 Correct 26 ms 2256 KB Output is correct
16 Correct 39 ms 2768 KB Output is correct
17 Correct 53 ms 4036 KB Output is correct
18 Correct 53 ms 4044 KB Output is correct
19 Correct 50 ms 4148 KB Output is correct
20 Correct 55 ms 4176 KB Output is correct
21 Correct 44 ms 4044 KB Output is correct
22 Correct 38 ms 3668 KB Output is correct
23 Correct 49 ms 3608 KB Output is correct
24 Correct 51 ms 3588 KB Output is correct
25 Correct 37 ms 3600 KB Output is correct
26 Correct 50 ms 3948 KB Output is correct
27 Correct 47 ms 4076 KB Output is correct
28 Correct 48 ms 4256 KB Output is correct
29 Correct 45 ms 4080 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB Output is correct
2 Correct 1 ms 360 KB Output is correct
3 Correct 2 ms 332 KB Output is correct
4 Correct 2 ms 332 KB Output is correct
5 Correct 2 ms 372 KB Output is correct
6 Correct 2 ms 332 KB Output is correct
7 Correct 2 ms 380 KB Output is correct
8 Correct 2 ms 332 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 2 ms 332 KB Output is correct
11 Correct 2 ms 332 KB Output is correct
12 Correct 2 ms 332 KB Output is correct
13 Correct 2 ms 332 KB Output is correct
14 Correct 13 ms 1356 KB Output is correct
15 Correct 26 ms 2256 KB Output is correct
16 Correct 39 ms 2768 KB Output is correct
17 Correct 53 ms 4036 KB Output is correct
18 Correct 53 ms 4044 KB Output is correct
19 Correct 50 ms 4148 KB Output is correct
20 Correct 55 ms 4176 KB Output is correct
21 Correct 44 ms 4044 KB Output is correct
22 Correct 38 ms 3668 KB Output is correct
23 Correct 49 ms 3608 KB Output is correct
24 Correct 51 ms 3588 KB Output is correct
25 Correct 37 ms 3600 KB Output is correct
26 Correct 50 ms 3948 KB Output is correct
27 Correct 47 ms 4076 KB Output is correct
28 Correct 48 ms 4256 KB Output is correct
29 Correct 45 ms 4080 KB Output is correct
30 Correct 115 ms 12632 KB Output is correct
31 Correct 186 ms 13740 KB Output is correct
32 Correct 204 ms 15156 KB Output is correct
33 Correct 332 ms 17656 KB Output is correct
34 Correct 62 ms 12344 KB Output is correct
35 Correct 316 ms 17780 KB Output is correct
36 Correct 304 ms 17652 KB Output is correct
37 Correct 313 ms 17744 KB Output is correct
38 Correct 286 ms 17800 KB Output is correct
39 Correct 284 ms 17764 KB Output is correct
40 Correct 269 ms 17576 KB Output is correct
41 Correct 255 ms 17800 KB Output is correct
42 Correct 280 ms 17788 KB Output is correct
43 Correct 180 ms 17064 KB Output is correct
44 Correct 168 ms 17104 KB Output is correct
45 Correct 170 ms 16916 KB Output is correct
46 Correct 223 ms 15800 KB Output is correct
47 Correct 236 ms 15676 KB Output is correct
48 Correct 252 ms 17720 KB Output is correct
49 Correct 251 ms 17944 KB Output is correct