Submission #390168

# Submission time Handle Problem Language Result Execution time Memory
390168 2021-04-15T13:35:23 Z talant117408 Star Trek (CEOI20_startrek) C++17
45 / 100
91 ms 15572 KB
/*
    Code written by Talant I.D.
*/
#include <bits/stdc++.h>
 
using namespace std;
 
typedef long long ll;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
 
#define precision(n) fixed << setprecision(n)
#define pb push_back
#define ub upper_bound
#define lb lower_bound
#define mp make_pair
#define eps (double)1e-9
#define PI 2*acos(0.0)
#define endl "\n"
#define sz(v) int((v).size())
#define all(v) v.begin(),v.end()
#define rall(v) v.rbegin(),v.rend()
#define do_not_disturb ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define OK cout << "OK" << endl;
 
const int mod = 1e9+7;
 
ll mode(ll a) {
    a %= mod;
    if (a < 0) a += mod;
    return a;
}
 
ll subt(ll a, ll b) {
    return mode(mode(a)-mode(b));
}
 
ll add(ll a, ll b) {
    return mode(mode(a)+mode(b));
}
 
ll mult(ll a, ll b) {
    return mode(mode(a)*mode(b));
}
 
ll binpow(ll a, ll b) {
    ll res = 1;
    while (b) {
        if (b&1) res = mult(res, a);
        a = mult(a, a);
        b >>= 1;
    }
    return res;
}

const int N = 1e5+7;
int state[N], l, w, state_as_root[N];
int losing_children[N], critical[N], depth[N], par[N];
ll dp[N];
vector <int> graph[N];

bool dfs(int v, int p) {
	par[v] = p;
	depth[v] = depth[p]+1;
	int cnt = 0, children = 0;
	for (auto to : graph[v]) {
		if (to == p) continue;
		children++;
		dfs(to, v);
		cnt += (state[to] ? 1 : 0);
		if (state[to]) losing_children[v]++;
	}
	if (children == 0) state[v] = 1;
	else if (cnt) state[v] = 0;
	else state[v] = 1;
	return state[v];
}

void dfs2(int v, int p, int origin, int cnt = 0) {
	if (cnt == depth[v] && state[v]) critical[origin]++;
	if (state[v]) {
		for (auto to : graph[v]) {
			if (to == p) continue;
			dfs2(to, v, origin, cnt+1);
		}
	}
	else {
		for (auto to : graph[v]) {
			if (to == p) continue;
			if (state[to]) {
				dfs2(to, v, origin, (losing_children[v] == 1 ? cnt+1 : 0));
			}
		}
	}
}

void dfs3(int v, int p) {
	state_as_root[v] = state[v];
	if (state[v]) l++;
	else w++;
	for (auto to : graph[v]) {
		if (to == p) continue;
		if (state[v] == false && state[to] == true) {
			if (losing_children[v] == 1 && (state_as_root[par[v]] == false)) {
				losing_children[v]--;
				losing_children[to]++;
				state[v] = 1;
				state[to] = 0;
				dfs3(to, v);
				losing_children[v]++;
				losing_children[to]--;
				state[v] = 0;
				state[to] = 1;
			}
			else {
				dfs3(to, v);
			}
		}
		else {
			dfs3(to, v);
		}
	}
}

int main() {
	do_not_disturb
	
	int n;
	ll d;
	cin >> n >> d;
	for (int i = 0; i < n-1; i++) {
		int x, y;
		cin >> x >> y;
		graph[x].pb(y);
		graph[y].pb(x);
	}
	
	if (n == 2) {
		cout << binpow(2, d*2);
	}
	else if (d <= 1e5 && n <= 1000) {
		depth[1] = -1;
		dfs(1, 1);
		dfs3(1, 1);
		for (int i = 1; i <= n; i++) {
			depth[i] = -1;
			for (int j = 1; j <= n; j++) losing_children[j] = 0;
			dfs(i, i);
			dfs2(i, i, i);
		}
		dp[0] = l;
		ll E = 0;
		for (int i = 1; i <= n; i++) {
			if (state[i]) {
				E = subt(E, critical[i]);
			}
			else {
				E = add(E, critical[i]);
			}
		}
		
		for (int i = d-1; i >= 0; i--) {
			dp[d-i] = add(mult(l, binpow(n, 2*(d-i))), mult(E, dp[d-i-1]));
		}
		ll L1 = (!state_as_root[1] ? mult(critical[1], dp[d-1]) : subt(binpow(n, 2*d), mult(critical[1], dp[d-1])));
		cout << subt(binpow(n, d*2), L1) << endl;
	}
	else if (d == 1) {
		depth[1] = -1;
		dfs(1, 1);
		dfs2(1, 1, 1);
		dfs3(1, 1);
		if (state_as_root[1]) cout << mult(critical[1], l);
		else cout << add(mult(n, w), mult(subt(n, critical[1]), l));
	}
	
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Incorrect 31 ms 2736 KB Output isn't correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 2 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2636 KB Output is correct
5 Correct 2 ms 2640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 2 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2692 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 2 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2692 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 36 ms 2788 KB Output is correct
8 Correct 40 ms 2764 KB Output is correct
9 Correct 31 ms 2636 KB Output is correct
10 Correct 22 ms 2760 KB Output is correct
11 Correct 38 ms 2636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 2 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2692 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 36 ms 2788 KB Output is correct
8 Correct 40 ms 2764 KB Output is correct
9 Correct 31 ms 2636 KB Output is correct
10 Correct 22 ms 2760 KB Output is correct
11 Correct 38 ms 2636 KB Output is correct
12 Correct 86 ms 11276 KB Output is correct
13 Correct 91 ms 15572 KB Output is correct
14 Correct 86 ms 7836 KB Output is correct
15 Correct 71 ms 7744 KB Output is correct
16 Correct 69 ms 7764 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 2 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2692 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 36 ms 2788 KB Output is correct
8 Correct 40 ms 2764 KB Output is correct
9 Correct 31 ms 2636 KB Output is correct
10 Correct 22 ms 2760 KB Output is correct
11 Correct 38 ms 2636 KB Output is correct
12 Correct 2 ms 2636 KB Output is correct
13 Incorrect 27 ms 2636 KB Output isn't correct
14 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Correct 2 ms 2636 KB Output is correct
3 Correct 2 ms 2636 KB Output is correct
4 Correct 2 ms 2692 KB Output is correct
5 Correct 2 ms 2636 KB Output is correct
6 Correct 2 ms 2636 KB Output is correct
7 Correct 36 ms 2788 KB Output is correct
8 Correct 40 ms 2764 KB Output is correct
9 Correct 31 ms 2636 KB Output is correct
10 Correct 22 ms 2760 KB Output is correct
11 Correct 38 ms 2636 KB Output is correct
12 Correct 86 ms 11276 KB Output is correct
13 Correct 91 ms 15572 KB Output is correct
14 Correct 86 ms 7836 KB Output is correct
15 Correct 71 ms 7744 KB Output is correct
16 Correct 69 ms 7764 KB Output is correct
17 Correct 2 ms 2636 KB Output is correct
18 Incorrect 27 ms 2636 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2636 KB Output is correct
2 Incorrect 31 ms 2736 KB Output isn't correct