제출 #390145

#제출 시각아이디문제언어결과실행 시간메모리
390145talant117408Star Trek (CEOI20_startrek)C++17
45 / 100
112 ms16684 KiB
/* Code written by Talant I.D. */ #include <bits/stdc++.h> using namespace std; typedef long long ll; typedef pair <int, int> pii; typedef pair <ll, ll> pll; #define precision(n) fixed << setprecision(n) #define pb push_back #define ub upper_bound #define lb lower_bound #define mp make_pair #define eps (double)1e-9 #define PI 2*acos(0.0) #define endl "\n" #define sz(v) int((v).size()) #define all(v) v.begin(),v.end() #define rall(v) v.rbegin(),v.rend() #define do_not_disturb ios::sync_with_stdio(0);cin.tie(0);cout.tie(0); #define OK cout << "OK" << endl; const int mod = 1e9+7; ll mode(ll a) { a %= mod; if (a < 0) a += mod; return a; } ll subt(ll a, ll b) { return mode(mode(a)-mode(b)); } ll add(ll a, ll b) { return mode(mode(a)+mode(b)); } ll mult(ll a, ll b) { return mode(mode(a)*mode(b)); } ll binpow(ll a, ll b) { ll res = 1; while (b) { if (b&1) res = mult(res, a); a = mult(a, a); b >>= 1; } return res; } const int N = 1e5+7; int state[N], l, w, state_as_root[N]; int losing_children[N], critical[N], depth[N], par[N]; ll dp[N]; vector <int> graph[N]; bool dfs(int v, int p) { par[v] = p; depth[v] = depth[p]+1; int cnt = 0, children = 0; for (auto to : graph[v]) { if (to == p) continue; children++; dfs(to, v); cnt += (state[to] ? 1 : 0); if (state[to]) losing_children[v]++; } if (children == 0) state[v] = 1; else if (cnt) state[v] = 0; else state[v] = 1; return state[v]; } void dfs2(int v, int p, int origin, int cnt = 0) { if (cnt == depth[v] && state[v]) critical[origin]++; if (state[v]) { for (auto to : graph[v]) { if (to == p) continue; dfs2(to, v, origin, cnt+1); } } else { for (auto to : graph[v]) { if (to == p) continue; if (state[to]) { dfs2(to, v, origin, (losing_children[v] == 1 ? cnt+1 : 0)); } } } } void dfs3(int v, int p) { state_as_root[v] = state[v]; if (state[v]) l++; else w++; for (auto to : graph[v]) { if (to == p) continue; if (state[v] == false && state[to] == true) { if (losing_children[v] == 1 && (state_as_root[par[v]] == false)) { losing_children[v]--; losing_children[to]++; state[v] = 1; state[to] = 0; dfs3(to, v); losing_children[v]++; losing_children[to]--; state[v] = 0; state[to] = 1; } else { dfs3(to, v); } } else { dfs3(to, v); } } } int main() { do_not_disturb int n; ll d; cin >> n >> d; for (int i = 0; i < n-1; i++) { int x, y; cin >> x >> y; graph[x].pb(y); graph[y].pb(x); } if (n == 2) { cout << binpow(2, d*2); } else if (d == 1) { depth[1] = -1; dfs(1, 1); dfs2(1, 1, 1); dfs3(1, 1); if (state_as_root[1]) cout << mult(critical[1], l); else cout << add(mult(n, w), mult(subt(n, critical[1]), l)); } else if (d <= 1e5) { depth[1] = -1; dfs(1, 1); dfs3(1, 1); for (int i = 1; i <= n; i++) { depth[i] = -1; for (int j = 1; j <= n; j++) losing_children[j] = 0; dfs(i, i); dfs2(i, i, i); } dp[0] = l; ll E = 0; for (int i = 1; i <= n; i++) { if (state[i]) { E = subt(E, critical[i]); } else { E = add(E, critical[i]); } } for (int i = 1; i <= d; i++) { dp[i] = add(mult(l, binpow(n, 2*(d-i))), mult(E, dp[i-1])); } cout << (state[1] ? mult(dp[d-1], critical[1]) : subt(binpow(n, 2*d), mult(dp[d-1], critical[1]))) << endl; } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...