#include <bits/stdc++.h>
template <class T>
using Vec = std::vector<T>;
template <class T>
void fix(Vec<T>& vec) {
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
}
template <class T>
int lowb(const Vec<T>& vec, const T& x) {
return std::lower_bound(vec.cbegin(), vec.cend(), x) - vec.cbegin();
}
template <class T>
int upb(const Vec<T>& vec, const T& x) {
return std::upper_bound(vec.cbegin(), vec.cend(), x) - vec.cbegin();
}
template <class T>
void setmax(T& lhs, const T& rhs) {
if (lhs < rhs) {
lhs = rhs;
}
}
struct Segtree {
int size;
Vec<int> data;
Segtree(const int n): size(n), data(2 * n, -1) {}
void chmax(int l, int r, const int x) {
l += size;
r += size;
while (l < r) {
if (l & 1) setmax(data[l++], x);
if (r & 1) setmax(data[--r], x);
l >>= 1;
r >>= 1;
}
}
int get(int i) const {
int ret = -1;
i += size;
while (i > 0) {
setmax(ret, data[i]);
i >>= 1;
}
return ret;
}
};
struct Fenwick {
Vec<int> data;
Fenwick(const int n): data(n + 1) { }
void add(int i) {
for (i += 1; i < (int) data.size(); i += i & -i) {
data[i] ^= 1;
}
}
int get(int i) const {
int ret = 0;
for (; i > 0; i -= i & -i) {
ret ^= data[i];
}
return ret;
}
int fold(const int l, const int r) const {
return get(l) ^ get(r);
}
};
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
int N, Q;
std::cin >> N >> Q;
Vec<int> A(N), B(N), T(Q);
for (int i = 0; i < N; ++i) {
std::cin >> A[i] >> B[i];
}
for (int i = 0; i < Q; ++i) {
std::cin >> T[i];
}
Vec<int> xs, ys, ts;
xs.reserve(N);
ys.reserve(N);
for (int i = 0; i < N; ++i) {
xs.push_back(std::min(A[i], B[i]));
ys.push_back(std::max(A[i], B[i]));
}
fix(xs);
fix(ys);
ts = T;
fix(ts);
Vec<int> xid(N), yid(N), tid(Q);
for (int i = 0; i < N; ++i) {
xid[i] = lowb(xs, std::min(A[i], B[i]));
yid[i] = lowb(ys, std::max(A[i], B[i]));
}
for (int i = 0; i < Q; ++i) {
tid[i] = lowb(ts, T[i]);
}
Vec<int> time(N);
{
Vec<Vec<int>> qs(xs.size());
for (int i = 0; i < N; ++i) {
qs[xid[i]].push_back(i);
}
Vec<Vec<int>> add(xs.size());
for (int i = 0; i < Q; ++i) {
const auto x = upb(xs, T[i]);
if (x > 0) {
add[x - 1].push_back(i);
}
}
Segtree seg(ys.size());
for (int x = (int) xs.size() - 1; x >= 0; --x) {
for (const auto i: add[x]) {
seg.chmax(upb(ys, T[i]), (int) ys.size(), i);
}
for (const auto i: qs[x]) {
time[i] = seg.get(yid[i]);
}
}
}
Vec<int> cnt(N);
{
Vec<Vec<int>> qs(Q);
for (int i = 0; i < N; ++i) {
if (time[i] != Q - 1) {
qs[time[i] + 1].push_back(i);
}
}
Fenwick fen(ts.size());
for (int q = Q - 1; q >= 0; --q) {
fen.add(tid[q]);
for (const auto i: qs[q]) {
cnt[i] = fen.fold(lowb(ts, std::max(A[i], B[i])), (int) ts.size());
}
}
}
long long sum = 0;
for (int i = 0; i < N; ++i) {
sum += ((time[i] >= 0 or A[i] >= B[i]) ^ cnt[i]) ? std::max(A[i], B[i]) : std::min(A[i], B[i]);
}
std::cout << sum << '\n';
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
332 KB |
Output is correct |
2 |
Correct |
1 ms |
328 KB |
Output is correct |
3 |
Correct |
2 ms |
460 KB |
Output is correct |
4 |
Correct |
3 ms |
460 KB |
Output is correct |
5 |
Correct |
2 ms |
460 KB |
Output is correct |
6 |
Correct |
2 ms |
460 KB |
Output is correct |
7 |
Correct |
2 ms |
460 KB |
Output is correct |
8 |
Correct |
2 ms |
456 KB |
Output is correct |
9 |
Correct |
1 ms |
460 KB |
Output is correct |
10 |
Correct |
2 ms |
460 KB |
Output is correct |
11 |
Correct |
2 ms |
356 KB |
Output is correct |
12 |
Correct |
2 ms |
364 KB |
Output is correct |
13 |
Correct |
2 ms |
344 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
332 KB |
Output is correct |
2 |
Correct |
1 ms |
328 KB |
Output is correct |
3 |
Correct |
2 ms |
460 KB |
Output is correct |
4 |
Correct |
3 ms |
460 KB |
Output is correct |
5 |
Correct |
2 ms |
460 KB |
Output is correct |
6 |
Correct |
2 ms |
460 KB |
Output is correct |
7 |
Correct |
2 ms |
460 KB |
Output is correct |
8 |
Correct |
2 ms |
456 KB |
Output is correct |
9 |
Correct |
1 ms |
460 KB |
Output is correct |
10 |
Correct |
2 ms |
460 KB |
Output is correct |
11 |
Correct |
2 ms |
356 KB |
Output is correct |
12 |
Correct |
2 ms |
364 KB |
Output is correct |
13 |
Correct |
2 ms |
344 KB |
Output is correct |
14 |
Correct |
16 ms |
2028 KB |
Output is correct |
15 |
Correct |
33 ms |
3632 KB |
Output is correct |
16 |
Correct |
51 ms |
5352 KB |
Output is correct |
17 |
Correct |
70 ms |
7136 KB |
Output is correct |
18 |
Correct |
68 ms |
7016 KB |
Output is correct |
19 |
Correct |
66 ms |
7084 KB |
Output is correct |
20 |
Correct |
70 ms |
7108 KB |
Output is correct |
21 |
Correct |
57 ms |
6812 KB |
Output is correct |
22 |
Correct |
45 ms |
6532 KB |
Output is correct |
23 |
Correct |
48 ms |
6672 KB |
Output is correct |
24 |
Correct |
51 ms |
6804 KB |
Output is correct |
25 |
Correct |
42 ms |
6460 KB |
Output is correct |
26 |
Correct |
42 ms |
4084 KB |
Output is correct |
27 |
Correct |
50 ms |
4532 KB |
Output is correct |
28 |
Correct |
45 ms |
4504 KB |
Output is correct |
29 |
Correct |
68 ms |
5480 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
332 KB |
Output is correct |
2 |
Correct |
1 ms |
328 KB |
Output is correct |
3 |
Correct |
2 ms |
460 KB |
Output is correct |
4 |
Correct |
3 ms |
460 KB |
Output is correct |
5 |
Correct |
2 ms |
460 KB |
Output is correct |
6 |
Correct |
2 ms |
460 KB |
Output is correct |
7 |
Correct |
2 ms |
460 KB |
Output is correct |
8 |
Correct |
2 ms |
456 KB |
Output is correct |
9 |
Correct |
1 ms |
460 KB |
Output is correct |
10 |
Correct |
2 ms |
460 KB |
Output is correct |
11 |
Correct |
2 ms |
356 KB |
Output is correct |
12 |
Correct |
2 ms |
364 KB |
Output is correct |
13 |
Correct |
2 ms |
344 KB |
Output is correct |
14 |
Correct |
16 ms |
2028 KB |
Output is correct |
15 |
Correct |
33 ms |
3632 KB |
Output is correct |
16 |
Correct |
51 ms |
5352 KB |
Output is correct |
17 |
Correct |
70 ms |
7136 KB |
Output is correct |
18 |
Correct |
68 ms |
7016 KB |
Output is correct |
19 |
Correct |
66 ms |
7084 KB |
Output is correct |
20 |
Correct |
70 ms |
7108 KB |
Output is correct |
21 |
Correct |
57 ms |
6812 KB |
Output is correct |
22 |
Correct |
45 ms |
6532 KB |
Output is correct |
23 |
Correct |
48 ms |
6672 KB |
Output is correct |
24 |
Correct |
51 ms |
6804 KB |
Output is correct |
25 |
Correct |
42 ms |
6460 KB |
Output is correct |
26 |
Correct |
42 ms |
4084 KB |
Output is correct |
27 |
Correct |
50 ms |
4532 KB |
Output is correct |
28 |
Correct |
45 ms |
4504 KB |
Output is correct |
29 |
Correct |
68 ms |
5480 KB |
Output is correct |
30 |
Correct |
133 ms |
12268 KB |
Output is correct |
31 |
Correct |
196 ms |
15016 KB |
Output is correct |
32 |
Correct |
280 ms |
20200 KB |
Output is correct |
33 |
Correct |
460 ms |
34224 KB |
Output is correct |
34 |
Correct |
86 ms |
10048 KB |
Output is correct |
35 |
Correct |
488 ms |
34264 KB |
Output is correct |
36 |
Correct |
442 ms |
34164 KB |
Output is correct |
37 |
Correct |
462 ms |
34132 KB |
Output is correct |
38 |
Correct |
443 ms |
34036 KB |
Output is correct |
39 |
Correct |
455 ms |
34408 KB |
Output is correct |
40 |
Correct |
349 ms |
32164 KB |
Output is correct |
41 |
Correct |
441 ms |
34400 KB |
Output is correct |
42 |
Correct |
450 ms |
34408 KB |
Output is correct |
43 |
Correct |
202 ms |
31328 KB |
Output is correct |
44 |
Correct |
234 ms |
31552 KB |
Output is correct |
45 |
Correct |
204 ms |
31288 KB |
Output is correct |
46 |
Correct |
274 ms |
32612 KB |
Output is correct |
47 |
Correct |
304 ms |
33104 KB |
Output is correct |
48 |
Correct |
269 ms |
21324 KB |
Output is correct |
49 |
Correct |
272 ms |
21584 KB |
Output is correct |