답안 #389608

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
389608 2021-04-14T09:28:45 Z maksim1744 Election Campaign (JOI15_election_campaign) C++17
100 / 100
346 ms 71684 KB
/*
    author:  Maksim1744
    created: 14.04.2021 11:51:00
*/

#include "bits/stdc++.h"

using namespace std;

using ll = long long;
using ld = long double;

#define mp   make_pair
#define pb   push_back
#define eb   emplace_back

#define sum(a)     ( accumulate ((a).begin(), (a).end(), 0ll))
#define mine(a)    (*min_element((a).begin(), (a).end()))
#define maxe(a)    (*max_element((a).begin(), (a).end()))
#define mini(a)    ( min_element((a).begin(), (a).end()) - (a).begin())
#define maxi(a)    ( max_element((a).begin(), (a).end()) - (a).begin())
#define lowb(a, x) ( lower_bound((a).begin(), (a).end(), (x)) - (a).begin())
#define uppb(a, x) ( upper_bound((a).begin(), (a).end(), (x)) - (a).begin())

template<typename T>             vector<T>& operator--            (vector<T> &v){for (auto& i : v) --i;            return  v;}
template<typename T>             vector<T>& operator++            (vector<T> &v){for (auto& i : v) ++i;            return  v;}
template<typename T>             istream& operator>>(istream& is,  vector<T> &v){for (auto& i : v) is >> i;        return is;}
template<typename T>             ostream& operator<<(ostream& os,  vector<T>  v){for (auto& i : v) os << i << ' '; return os;}
template<typename T, typename U> pair<T,U>& operator--           (pair<T, U> &p){--p.first; --p.second;            return  p;}
template<typename T, typename U> pair<T,U>& operator++           (pair<T, U> &p){++p.first; ++p.second;            return  p;}
template<typename T, typename U> istream& operator>>(istream& is, pair<T, U> &p){is >> p.first >> p.second;        return is;}
template<typename T, typename U> ostream& operator<<(ostream& os, pair<T, U>  p){os << p.first << ' ' << p.second; return os;}
template<typename T, typename U> pair<T,U> operator-(pair<T,U> a, pair<T,U> b){return mp(a.first-b.first, a.second-b.second);}
template<typename T, typename U> pair<T,U> operator+(pair<T,U> a, pair<T,U> b){return mp(a.first+b.first, a.second+b.second);}
template<typename T, typename U> void umin(T& a, U b){if (a > b) a = b;}
template<typename T, typename U> void umax(T& a, U b){if (a < b) a = b;}

#ifdef HOME
#define SHOW_COLORS
#include "C:/C++ libs/print.cpp"
#else
#define show(...)     42
#define mclock        42
#define shows         42
#define debug if (false)
#endif

vector<int> lca_ind;
vector<vector<int>> lca_sparse;
vector<int> lca_p2;
vector<int> lca_depth;
void build_lca_sparse(vector<vector<int>>& g, int root = 0) {
    int n = g.size();
    vector<int> euler;
    lca_ind.resize(n);
    lca_depth.assign(n, -1);
    function<void(int, int)> dfs = [&](int v, int depth) {
        lca_ind[v] = euler.size();
        euler.pb(v);
        lca_depth[v] = depth;
        for (auto k : g[v]) {
            if (lca_depth[k] == -1) {
                dfs(k, depth + 1);
                euler.pb(v);
            }
        }
    };
    dfs(root, 0);
    int m = euler.size();
    int log = 1;
    while ((1 << log) < m)
        ++log;
    lca_sparse.resize(log);
    lca_sparse[0].resize(m);
    lca_p2.resize(m + 1);
    int pp2 = 0;
    for (int i = 1; i < lca_p2.size(); ++i) {
        if (1 << (pp2 + 1) <= i)
            ++pp2;
        lca_p2[i] = pp2;
    }
    lca_p2[0] = 0;
    for (int i = 0; i < m; ++i)
        lca_sparse[0][i] = euler[i];
    for (int i = 1; i < log; ++i) {
        lca_sparse[i].assign(m, 0);
        for (int j = 0; j < m - (1 << (i - 1)); ++j) {
            int v1 = lca_sparse[i - 1][j], v2 = lca_sparse[i - 1][j + (1 << (i - 1))];
            if (lca_depth[v1] < lca_depth[v2])
                lca_sparse[i][j] = v1;
            else
                lca_sparse[i][j] = v2;
        }
    }
}

int get_lca(int u, int v) {
    if (u == v)
        return u;
    u = lca_ind[u];
    v = lca_ind[v];
    if (u > v)
        swap(u, v);
    int v1 = lca_sparse[lca_p2[v - u + 1]][u], v2 = lca_sparse[lca_p2[v - u + 1]][v - (1 << lca_p2[v - u + 1]) + 1];
    if (lca_depth[v1] < lca_depth[v2])
        return v1;
    else
        return v2;
}

int dist(int u, int v) {
    return lca_depth[u] + lca_depth[v] - 2 * lca_depth[get_lca(u, v)];
}

struct item {
    int sm = 0;
    int md = 0;

    template<typename T>
    void init(const T &t, int l, int r) {
        sm = t;
        md = 0;
    }

    void update(const item &first, const item &second, int l, int r) {
        sm = first.sm + second.sm;
    }

    static item merge(const item &first, const item &second, int l, int r) {
        item res;
        res.update(first, second, l, r);  // careful with different lengths
        return res;
    }

    template<typename Modifier>
    void modify(const Modifier &m, int l, int r) {
        // apply here, save for children
        md += m;
        sm += m * (r - l + 1);
    }

    void push(item &first, item &second, int l, int r) {
        int m = (l + r) / 2;
        first.modify(md, l, m);
        second.modify(md, m + 1, r);
        // reset modifier
        md = 0;
    }
};

string to_string(const item &i) {
    stringstream ss;
    ss << "[" << "]";
    return ss.str();
}
ostream& operator << (ostream &o, const item &i) {
    return o << to_string(i);
}

struct segtree {
    vector<item> tree;
    int n = 1;

    segtree(int n = 1) : n(n) {
        tree.resize(1 << (__lg(n - 1) + 2));
    }

    template<typename T>
    void build(const vector<T> &v, int i, int l, int r) {
        if (l == r) {
            tree[i].init(v[l], l, r);
            return;
        }
        int m = (l + r) >> 1;
        build(v, i * 2 + 1, l, m);
        build(v, i * 2 + 2, m + 1, r);
        tree[i].update(tree[i * 2 + 1], tree[i * 2 + 2], l, r);
    }

    template<typename T>
    void build(const vector<T> &v) {
        n = v.size();
        tree.resize(1 << (__lg(n - 1) + 2));
        build(v, 0, 0, n - 1);
    }

    item ask(int l, int r, int i, int vl, int vr) {
        if (vl != vr) {
            tree[i].push(tree[i * 2 + 1], tree[i * 2 + 2], vl, vr);
        }
        if (l == vl && r == vr) {
            return tree[i];
        }
        int m = (vl + vr) >> 1;
        if (r <= m) {
            return ask(l, r, i * 2 + 1, vl, m);
        } else if (m < l) {
            return ask(l, r, i * 2 + 2, m + 1, vr);
        } else {
            return item::merge(ask(l, m, i * 2 + 1, vl, m), ask(m + 1, r, i * 2 + 2, m + 1, vr), l, r);
        }
    }

    item ask(int l, int r) {
        l = max(l, 0); r = min(r, n - 1);
        if (l > r) return item();
        return ask(l, r, 0, 0, n - 1);
    }

    template<typename T>
    void set(int ind, const T &t) {
        static array<pair<int, int>, 30> st;
        int l = 0, r = n - 1, i = 0;
        int ptr = -1;
        while (l != r) {
            if (l != r) {
                tree[i].push(tree[i * 2 + 1], tree[i * 2 + 2], l, r);
            }
            st[++ptr] = {l, r};
            int m = (l + r) >> 1;
            if (ind <= m) {
                i = i * 2 + 1;
                r = m;
            } else {
                i = i * 2 + 2;
                l = m + 1;
            }
        }
        tree[i].init(t, l, r);
        while (i != 0) {
            i = (i - 1) / 2;
            tree[i].update(tree[i * 2 + 1], tree[i * 2 + 2], st[ptr].first, st[ptr].second);
            --ptr;
        }
    }

    template<typename Modifier>
    void modify(int l, int r, const Modifier &modifier, int i, int vl, int vr) {
        if (vl != vr) {
            tree[i].push(tree[i * 2 + 1], tree[i * 2 + 2], vl, vr);
        }
        if (l == vl && r == vr) {
            tree[i].modify(modifier, vl, vr);
            return;
        }
        int m = (vl + vr) >> 1;
        if (r <= m) {
            modify(l, r, modifier, i * 2 + 1, vl, m);
        } else if (m < l) {
            modify(l, r, modifier, i * 2 + 2, m + 1, vr);
        } else {
            modify(l, m, modifier, i * 2 + 1, vl, m);
            modify(m + 1, r, modifier, i * 2 + 2, m + 1, vr);
        }
        tree[i].update(tree[i * 2 + 1], tree[i * 2 + 2], vl, vr);
    }

    template<typename Modifier>
    void modify(int l, int r, const Modifier &modifier) {
        l = max(l, 0); r = min(r, n - 1);
        if (l > r) return;
        modify(l, r, modifier, 0, 0, n - 1);
    }
};

int main() {
    ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);

    int n;
    cin >> n;
    vector<vector<int>> g(n);
    for (int i = 0; i < n - 1; ++i) {
        int u, v;
        cin >> u >> v;
        --u; --v;
        g[u].push_back(v);
        g[v].push_back(u);
    }

    build_lca_sparse(g, 0);

    int m;
    cin >> m;

    vector<vector<pair<pair<int, int>, int>>> here(n);

    for (int i = 0; i < m; ++i) {
        int a, b, c;
        cin >> a >> b >> c;
        --a; --b;
        here[get_lca(a, b)].eb(mp(a, b), c);
    }

    vector<int> dp(n, 0);
    vector<bool> u(n, false);
    vector<int> L(n), R(n), ind(n);
    vector<int> lvl(n, 0);

    segtree tree(n);

    int icur = 0;

    vector<vector<int>> up(20, vector<int>(n, -1));

    {
        vector<bool> u(n, false);
        function<void(int)> dfs1 = [&](int v) {
            u[v] = true;
            for (int k : g[v]) {
                if (!u[k]) {
                    up[0][k] = v;
                    dfs1(k);
                }
            }
        };
        dfs1(0);
        for (int i = 1; i < up.size(); ++i)
            for (int j = 0; j < n; ++j)
                if (up[i - 1][j] != -1)
                    up[i][j] = up[i - 1][up[i - 1][j]];
    }

    auto go_up = [&](int v, int k) {
        for (int i = 0; i < up.size(); ++i)
            if ((k >> i) & 1)
                v = up[i][v];
        return v;
    };

    function<void(int)> dfs = [&](int v) {
        u[v] = true;
        ind[v] = icur;
        ++icur;
        L[v] = R[v] = ind[v];
        int dp0 = 0;
        vector<int> ch;
        for (int k : g[v]) {
            if (!u[k]) {
                ch.pb(k);
                lvl[k] = lvl[v] + 1;
                dfs(k);
                L[v] = min(L[v], L[k]);
                R[v] = max(R[v], R[k]);
                dp0 += dp[k];
            }
        }
        dp[v] = dp0;
        for (auto [ab, c] : here[v]) {
            auto [a, b] = ab;
            int cur = dp0;
            for (int ch : vector<int>{a, b}) {
                if (ch != v) {
                    cur -= dp[go_up(ch, lvl[ch] - lvl[v] - 1)];
                    cur += tree.ask(ind[ch], ind[ch]).sm;
                }
            }
            dp[v] = max(dp[v], cur + c);
        }
        for (int k : ch) {
            tree.modify(L[k], R[k], dp0 - dp[k]);
        }
        tree.set(ind[v], dp0);
    };

    dfs(0);
    cout << dp[0] << '\n';

    return 0;
}

Compilation message

election_campaign.cpp: In function 'void build_lca_sparse(std::vector<std::vector<int> >&, int)':
election_campaign.cpp:77:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   77 |     for (int i = 1; i < lca_p2.size(); ++i) {
      |                     ~~^~~~~~~~~~~~~~~
election_campaign.cpp: In function 'int main()':
election_campaign.cpp:317:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  317 |         for (int i = 1; i < up.size(); ++i)
      |                         ~~^~~~~~~~~~~
election_campaign.cpp: In lambda function:
election_campaign.cpp:324:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  324 |         for (int i = 0; i < up.size(); ++i)
      |                         ~~^~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 1 ms 588 KB Output is correct
5 Correct 166 ms 36224 KB Output is correct
6 Correct 141 ms 68176 KB Output is correct
7 Correct 190 ms 57432 KB Output is correct
8 Correct 135 ms 37776 KB Output is correct
9 Correct 187 ms 51136 KB Output is correct
10 Correct 135 ms 37884 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 2 ms 848 KB Output is correct
4 Correct 219 ms 68772 KB Output is correct
5 Correct 223 ms 68908 KB Output is correct
6 Correct 206 ms 69004 KB Output is correct
7 Correct 220 ms 68784 KB Output is correct
8 Correct 224 ms 68904 KB Output is correct
9 Correct 208 ms 68804 KB Output is correct
10 Correct 217 ms 68776 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 2 ms 848 KB Output is correct
4 Correct 219 ms 68772 KB Output is correct
5 Correct 223 ms 68908 KB Output is correct
6 Correct 206 ms 69004 KB Output is correct
7 Correct 220 ms 68784 KB Output is correct
8 Correct 224 ms 68904 KB Output is correct
9 Correct 208 ms 68804 KB Output is correct
10 Correct 217 ms 68776 KB Output is correct
11 Correct 14 ms 1388 KB Output is correct
12 Correct 225 ms 69044 KB Output is correct
13 Correct 232 ms 68980 KB Output is correct
14 Correct 206 ms 68900 KB Output is correct
15 Correct 229 ms 68776 KB Output is correct
16 Correct 207 ms 68812 KB Output is correct
17 Correct 218 ms 68776 KB Output is correct
18 Correct 227 ms 69124 KB Output is correct
19 Correct 209 ms 68840 KB Output is correct
20 Correct 223 ms 68816 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 278 ms 37856 KB Output is correct
2 Correct 207 ms 71364 KB Output is correct
3 Correct 346 ms 59560 KB Output is correct
4 Correct 227 ms 40488 KB Output is correct
5 Correct 291 ms 57368 KB Output is correct
6 Correct 235 ms 40872 KB Output is correct
7 Correct 330 ms 56728 KB Output is correct
8 Correct 257 ms 40488 KB Output is correct
9 Correct 206 ms 71336 KB Output is correct
10 Correct 327 ms 53160 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 1 ms 588 KB Output is correct
5 Correct 166 ms 36224 KB Output is correct
6 Correct 141 ms 68176 KB Output is correct
7 Correct 190 ms 57432 KB Output is correct
8 Correct 135 ms 37776 KB Output is correct
9 Correct 187 ms 51136 KB Output is correct
10 Correct 135 ms 37884 KB Output is correct
11 Correct 2 ms 588 KB Output is correct
12 Correct 2 ms 844 KB Output is correct
13 Correct 3 ms 844 KB Output is correct
14 Correct 2 ms 588 KB Output is correct
15 Correct 2 ms 588 KB Output is correct
16 Correct 2 ms 716 KB Output is correct
17 Correct 2 ms 588 KB Output is correct
18 Correct 2 ms 844 KB Output is correct
19 Correct 2 ms 588 KB Output is correct
20 Correct 2 ms 972 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 1 ms 588 KB Output is correct
5 Correct 166 ms 36224 KB Output is correct
6 Correct 141 ms 68176 KB Output is correct
7 Correct 190 ms 57432 KB Output is correct
8 Correct 135 ms 37776 KB Output is correct
9 Correct 187 ms 51136 KB Output is correct
10 Correct 135 ms 37884 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 2 ms 848 KB Output is correct
14 Correct 219 ms 68772 KB Output is correct
15 Correct 223 ms 68908 KB Output is correct
16 Correct 206 ms 69004 KB Output is correct
17 Correct 220 ms 68784 KB Output is correct
18 Correct 224 ms 68904 KB Output is correct
19 Correct 208 ms 68804 KB Output is correct
20 Correct 217 ms 68776 KB Output is correct
21 Correct 14 ms 1388 KB Output is correct
22 Correct 225 ms 69044 KB Output is correct
23 Correct 232 ms 68980 KB Output is correct
24 Correct 206 ms 68900 KB Output is correct
25 Correct 229 ms 68776 KB Output is correct
26 Correct 207 ms 68812 KB Output is correct
27 Correct 218 ms 68776 KB Output is correct
28 Correct 227 ms 69124 KB Output is correct
29 Correct 209 ms 68840 KB Output is correct
30 Correct 223 ms 68816 KB Output is correct
31 Correct 278 ms 37856 KB Output is correct
32 Correct 207 ms 71364 KB Output is correct
33 Correct 346 ms 59560 KB Output is correct
34 Correct 227 ms 40488 KB Output is correct
35 Correct 291 ms 57368 KB Output is correct
36 Correct 235 ms 40872 KB Output is correct
37 Correct 330 ms 56728 KB Output is correct
38 Correct 257 ms 40488 KB Output is correct
39 Correct 206 ms 71336 KB Output is correct
40 Correct 327 ms 53160 KB Output is correct
41 Correct 2 ms 588 KB Output is correct
42 Correct 2 ms 844 KB Output is correct
43 Correct 3 ms 844 KB Output is correct
44 Correct 2 ms 588 KB Output is correct
45 Correct 2 ms 588 KB Output is correct
46 Correct 2 ms 716 KB Output is correct
47 Correct 2 ms 588 KB Output is correct
48 Correct 2 ms 844 KB Output is correct
49 Correct 2 ms 588 KB Output is correct
50 Correct 2 ms 972 KB Output is correct
51 Correct 264 ms 40880 KB Output is correct
52 Correct 228 ms 71664 KB Output is correct
53 Correct 333 ms 53928 KB Output is correct
54 Correct 213 ms 41004 KB Output is correct
55 Correct 267 ms 40536 KB Output is correct
56 Correct 220 ms 71532 KB Output is correct
57 Correct 303 ms 55940 KB Output is correct
58 Correct 231 ms 40968 KB Output is correct
59 Correct 261 ms 40756 KB Output is correct
60 Correct 223 ms 71596 KB Output is correct
61 Correct 298 ms 56232 KB Output is correct
62 Correct 236 ms 40964 KB Output is correct
63 Correct 272 ms 40624 KB Output is correct
64 Correct 221 ms 71632 KB Output is correct
65 Correct 346 ms 56360 KB Output is correct
66 Correct 207 ms 40880 KB Output is correct
67 Correct 277 ms 40456 KB Output is correct
68 Correct 221 ms 71684 KB Output is correct
69 Correct 294 ms 51352 KB Output is correct
70 Correct 235 ms 41004 KB Output is correct