#include <bits/stdc++.h>
using namespace std;
using lint = long long;
const lint INF = 1e12;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int N, Q;
cin >> N >> Q;
vector<lint> T(N), A(N), B(N), C(N);
for (int i = 0; i < N; i++) {
cin >> T[i] >> A[i] >> B[i] >> C[i];
T[i] *= 2; A[i] *= 2; B[i] *= 2;
}
vector<lint> P(Q), X(Q);
for (int i = 0; i < Q; i++) {
cin >> P[i] >> X[i];
P[i] *= 2; X[i] *= 2;
}
// Solution:
// In the 2D graph of position and time, the VIPs
// are diagonal lines. We must move (diagonally)
// s.t. maximize the sum of costs of overlapping lines.
//
// Rotate the lines by 45 degrees using (x + y, x - y).
// Then, we can do coordinate compression. Since there
// are O(N) distinct x coordinates and y coordinates,
// we can make the DP table in O(N^2).
//
// For each query, assume we go rightwars (downwards is
// symnetric). Then there are O(N) distinct y coordinates
// we can start on, so this runs in O(Q N).
vector<lint> ans(Q);
vector<lint> coords = {-INF, INF};
vector<array<lint, 3>> query;
vector<array<lint, 5>> lines;
for (int i = 0; i < N; i++) {
pair<lint, lint> st = {T[i], A[i]};
pair<lint, lint> et = {T[i] + abs(A[i] - B[i]), B[i]};
st = pair(st.first + st.second, st.first - st.second);
et = pair(et.first + et.second, et.first - et.second);
lines.push_back({st.first, st.second, et.first, et.second, C[i]});
assert(st < et && (st.first == et.first || st.second == et.second));
coords.emplace_back(st.first);
coords.emplace_back(st.second);
coords.emplace_back(et.first);
coords.emplace_back(et.second);
}
for (int i = 0; i < Q; i++) {
pair<lint, lint> st = {P[i], X[i]};
st = pair(st.first + st.second, st.first - st.second);
query.push_back({st.first, st.second, i});
}
sort(begin(coords), end(coords));
coords.resize(unique(begin(coords), end(coords)) - begin(coords));
const auto Coord = [&](lint x) {
return lower_bound(begin(coords), end(coords), x) - begin(coords);
};
for (auto &l : lines) {
for (int i = 0; i < 4; i++) {
l[i] = Coord(l[i]);
}
}
for (int rep = 0; rep < 2; rep++) {
sort(begin(lines), end(lines));
sort(begin(query), end(query));
reverse(begin(query), end(query));
int query_ptr = 0;
vector<lint> dp(coords.size());
for (int x = int(coords.size()) - 1; x >= 1; x--) {
vector<lint> cost_horz(coords.size());
vector<lint> cost_vert(coords.size());
vector<lint> last = dp;
for (auto l : lines) {
if (l[0] == l[2] && l[0] == x) { // horizontal line
for (int y = l[1]; y < l[3]; y++) {
cost_horz[y] = max(cost_horz[y], l[4]);
}
}
if (l[1] == l[3] && l[0] <= x && x < l[2]) { // vertical line
dp[l[1]] = max(dp[l[1]], last[l[1]] + (coords[x + 1] - coords[x]) * l[4]);
}
if (l[1] == l[3] && l[0] < x && x <= l[2]) {
cost_vert[l[1]] = max(cost_vert[l[1]], l[4]);
}
}
for (int y = int(coords.size()) - 2; y >= 0; y--) {
dp[y] = max(dp[y], cost_horz[y] * (coords[y + 1] - coords[y]) + dp[y + 1]);
}
while (query_ptr < int(query.size()) && coords[x - 1] < query[query_ptr][0]) {
auto q = query[query_ptr++];
int yinit = lower_bound(begin(coords), end(coords), q[1]) - begin(coords);
if (coords[x] == q[0]) {
ans[q[2]] = max(ans[q[2]], dp[yinit] + (coords[yinit] - q[1]) * cost_horz[yinit - 1]);
} else {
for (int y = yinit; y < int(coords.size()); y++) {
ans[q[2]] = max(ans[q[2]], dp[y] + (coords[x] - q[0]) * cost_vert[y]);
}
}
}
}
for (int i = 0; i < N; i++) {
swap(lines[i][0], lines[i][1]);
swap(lines[i][2], lines[i][3]);
}
for (int i = 0; i < Q; i++) {
swap(query[i][0], query[i][1]);
}
}
for (int i = 0; i < Q; i++) {
assert(ans[i] % 4 == 0);
cout << (ans[i] / 4) << '\n';
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
12119 ms |
211200 KB |
Output is correct |
2 |
Correct |
11925 ms |
211288 KB |
Output is correct |
3 |
Correct |
8154 ms |
200292 KB |
Output is correct |
4 |
Correct |
8117 ms |
197044 KB |
Output is correct |
5 |
Execution timed out |
25020 ms |
195464 KB |
Time limit exceeded |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1345 ms |
1124 KB |
Output is correct |
2 |
Correct |
1338 ms |
1092 KB |
Output is correct |
3 |
Correct |
1325 ms |
1132 KB |
Output is correct |
4 |
Correct |
152 ms |
844 KB |
Output is correct |
5 |
Correct |
824 ms |
844 KB |
Output is correct |
6 |
Correct |
960 ms |
844 KB |
Output is correct |
7 |
Correct |
1280 ms |
1180 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1345 ms |
1124 KB |
Output is correct |
2 |
Correct |
1338 ms |
1092 KB |
Output is correct |
3 |
Correct |
1325 ms |
1132 KB |
Output is correct |
4 |
Correct |
152 ms |
844 KB |
Output is correct |
5 |
Correct |
824 ms |
844 KB |
Output is correct |
6 |
Correct |
960 ms |
844 KB |
Output is correct |
7 |
Correct |
1280 ms |
1180 KB |
Output is correct |
8 |
Correct |
1812 ms |
1264 KB |
Output is correct |
9 |
Correct |
1770 ms |
1324 KB |
Output is correct |
10 |
Correct |
1717 ms |
1512 KB |
Output is correct |
11 |
Correct |
161 ms |
912 KB |
Output is correct |
12 |
Correct |
1112 ms |
1440 KB |
Output is correct |
13 |
Correct |
1354 ms |
1160 KB |
Output is correct |
14 |
Correct |
1111 ms |
1188 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1345 ms |
1124 KB |
Output is correct |
2 |
Correct |
1338 ms |
1092 KB |
Output is correct |
3 |
Correct |
1325 ms |
1132 KB |
Output is correct |
4 |
Correct |
152 ms |
844 KB |
Output is correct |
5 |
Correct |
824 ms |
844 KB |
Output is correct |
6 |
Correct |
960 ms |
844 KB |
Output is correct |
7 |
Correct |
1280 ms |
1180 KB |
Output is correct |
8 |
Correct |
1812 ms |
1264 KB |
Output is correct |
9 |
Correct |
1770 ms |
1324 KB |
Output is correct |
10 |
Correct |
1717 ms |
1512 KB |
Output is correct |
11 |
Correct |
161 ms |
912 KB |
Output is correct |
12 |
Correct |
1112 ms |
1440 KB |
Output is correct |
13 |
Correct |
1354 ms |
1160 KB |
Output is correct |
14 |
Correct |
1111 ms |
1188 KB |
Output is correct |
15 |
Correct |
1826 ms |
4484 KB |
Output is correct |
16 |
Correct |
1827 ms |
4472 KB |
Output is correct |
17 |
Correct |
1577 ms |
4228 KB |
Output is correct |
18 |
Correct |
248 ms |
4220 KB |
Output is correct |
19 |
Correct |
1289 ms |
3972 KB |
Output is correct |
20 |
Correct |
1527 ms |
3972 KB |
Output is correct |
21 |
Correct |
1610 ms |
3788 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
12119 ms |
211200 KB |
Output is correct |
2 |
Correct |
11925 ms |
211288 KB |
Output is correct |
3 |
Correct |
8154 ms |
200292 KB |
Output is correct |
4 |
Correct |
8117 ms |
197044 KB |
Output is correct |
5 |
Execution timed out |
25020 ms |
195464 KB |
Time limit exceeded |