# | 제출 시각UTC-0 | 아이디 | 문제 | 언어 | 결과 | 실행 시간 | 메모리 |
---|---|---|---|---|---|---|---|
387610 | rama_pang | Escape Route (JOI21_escape_route) | C++17 | 9023 ms | 197148 KiB |
이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#include "escape_route.h"
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
const lint inf = 1e18;
vector<lint> calculate_necessary_time(
int N, int M, lint S, int Q,
vector<int> A, vector<int> B,
vector<lint> L, vector<lint> C,
vector<int> U, vector<int> V, vector<lint> T) {
// Solution:
//
// First, we compute the minimum time between any 2 cities
// x and y, if we start from city x at time 0. We can
// compute this in O(N^3) with Dijkstra.
//
// Next, process each starting city independently.
// Generate the shortest path, assuming there is no restriction
// on roads, and day is indefinitely long. Then, there is an
// edge which is the "bottleneck" - the maximum time we can start
// at source to generate this particular shortest path tree.
// The bottleneck is the minimum C[i] - L[i] - dist[A[i]] if we
// use the i-th edge in shortest path tree to go from A[i] to B[i].
//
// After identifying the bottleneck, if we start at any time before
// the bottleneck, we can go to the other cities in time dist[v].
// After arriving at city v, we will have to wait until the next day,
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |