This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include "escape_route.h"
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
const lint inf = 1e18;
vector<lint> calculate_necessary_time(
int N, int M, lint S, int Q,
vector<int> A, vector<int> B,
vector<lint> L, vector<lint> C,
vector<int> U, vector<int> V, vector<lint> T) {
// Solution:
//
// First, we compute the minimum time between any 2 cities
// x and y, if we start from city x at time 0. We can
// compute this in O(N^3) with Dijkstra.
//
// Next, process each starting city independently.
// Generate the shortest path, assuming there is no restriction
// on roads, and day is indefinitely long. Then, there is an
// edge which is the "bottleneck" - the maximum time we can start
// at source to generate this particular shortest path tree.
// The bottleneck is the minimum C[i] - L[i] - dist[A[i]] if we
// use the i-th edge in shortest path tree to go from A[i] to B[i].
//
// After identifying the bottleneck, if we start at any time before
// the bottleneck, we can go to the other cities in time dist[v].
// After arriving at city v, we will have to wait until the next day,
// then start the journey again. However, we already computed the minimum
// time to go from any 2 cities if we start at time 0. Thus, we can
// process a single query by bruteforcing the city where we wait until
// the next day.
//
// Since after deleting a bottleneck, we recompute the shortest path tree,
// we need O(N^2) recomputations in O(N^2) time each. There are O(N) sources,
// and each query is done in O(N).
//
// Time complexity: O(N^5 + Q N + Q log Q).
// adjacency list
vector<vector<int>> adj(N);
for (int i = 0; i < M; i++) {
adj[A[i]].push_back(i);
adj[B[i]].push_back(i);
}
// distance between 2 cities if we start at time 0.
vector<vector<lint>> dist0(N, vector<lint>(N, inf));
for (int s = 0; s < N; s++) {
auto &dist = dist0[s];
vector<int> done(N);
dist[s] = 0;
for (int rep = 0; rep < N; rep++) {
int u = -1;
for (int v = 0; v < N; v++) if (!done[v]) {
if (u == -1 || dist[u] > dist[v]) {
u = v;
}
}
done[u] = 1;
for (auto e : adj[u]) {
int v = A[e] ^ B[e] ^ u;
if ((dist[u] % S) <= C[e] - L[e]) {
dist[v] = min(dist[v], dist[u] + L[e]);
} else {
dist[v] = min(dist[v], dist[u] + (S - dist[u] % S) % S + L[e]);
}
}
}
}
vector<lint> ans(Q, inf);
for (int s = 0; s < N; s++) {
vector<int> banned(M);
vector<vector<pair<lint, lint>>> ls(N); // list of (bottleneck, distance)
vector<int> used(M);
vector<lint> dist(N);
const auto Dijkstra = [&]() {
fill(begin(used), end(used), 0);
fill(begin(dist), end(dist), inf);
vector<int> prv(N, -1);
vector<int> done(N);
dist[s] = 0;
for (int rep = 0; rep < N; rep++) {
int u = -1;
for (int v = 0; v < N; v++) if (!done[v]) {
if (u == -1 || dist[u] > dist[v]) {
u = v;
}
}
if (dist[u] == inf) break;
done[u] = 1;
for (auto e : adj[u]) if (!banned[e]) {
int v = A[e] ^ B[e] ^ u;
if (dist[u] <= C[e] - L[e] && dist[v] > dist[u] + L[e]) {
if (prv[v] != -1) used[prv[v]] = 0;
dist[v] = dist[u] + L[e];
used[e] = 1;
prv[v] = e;
}
}
}
};
for (int rep = 0; rep < M + 1; rep++) {
Dijkstra();
pair<lint, int> bottleneck = {inf, -1};
for (int e = 0; e < M; e++) if (used[e]) {
if (dist[A[e]] < dist[B[e]]) {
bottleneck = min(bottleneck, {C[e] - dist[B[e]], e});
} else {
bottleneck = min(bottleneck, {C[e] - dist[A[e]], e});
}
}
if (bottleneck.second == -1) break;
banned[bottleneck.second] = 1;
for (int u = 0; u < N; u++) if (dist[u] != inf) {
if (ls[u].empty() || ls[u].back().first < bottleneck.first) {
assert(ls[u].empty() || ls[u].back().second <= dist[u]);
ls[u].emplace_back(bottleneck.first, dist[u]);
}
}
}
ls[s].emplace_back(inf, 0);
for (int u = 0; u < N; u++) {
for (int i = 0; i + 1 < (int) ls[u].size(); i++) {
assert(ls[u][i].first <= ls[u][i + 1].first);
assert(ls[u][i].second <= ls[u][i + 1].second);
}
reverse(begin(ls[u]), end(ls[u]));
}
vector<int> query;
for (int q = 0; q < Q; q++) if (U[q] == s) {
query.emplace_back(q);
}
sort(begin(query), end(query), [&](int i, int j) { return T[i] < T[j]; });
for (auto q : query) {
for (int m = 0; m < N; m++) {
while (!ls[m].empty() && T[q] > ls[m].back().first) {
ls[m].pop_back();
}
lint dt = ls[m].empty() ? inf : ls[m].back().second;
ans[q] = min(ans[q], dt + (m != V[q]) * ((S - (dt + T[q]) % S) % S) + dist0[m][V[q]]);
}
}
}
return ans;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |