Submission #384844

#TimeUsernameProblemLanguageResultExecution timeMemory
384844dolphingarlicPastiri (COI20_pastiri)C++14
100 / 100
969 ms108088 KiB
/* COI 2020 Pastiri - First, root the tree - For each sheep, find the highest node a shepherd can be at while guarding it - We first do multi-source BFS to find the closest sheep to each node, and then binary lifting to find the answer - Let's process the sheep in order of their depths (greatest depth first) - It's optimal to greedily assign shepherds to the highest nodes for each unguarded sheep as we go through the list - We can then use DFS to mark sheep as guarded - Complexity: O(N + K log N) */ #include <bits/stdc++.h> typedef long long ll; using namespace std; vector<int> graph[500001]; int sheep[500001], to_sheep[500001], depth[500001], anc[500001][19], highest[500001]; bool has_sheep[500001], guarded[500001]; void dfs(int node = 1, int parent = 0, int d = 0) { depth[node] = d; for (int i = 1; i < 19; i++) anc[node][i] = anc[anc[node][i - 1]][i - 1]; int h = node, dist = 1; if (has_sheep[node]) for (int i = 18; ~i; i--) if (dist + (1 << i) == to_sheep[anc[h][i]]) { dist += (1 << i); h = anc[h][i]; } highest[node] = h; for (int i : graph[node]) if (i != parent) { anc[i][0] = node; dfs(i, node, d + 1); } } void guard(int node) { guarded[node] = true; for (int i : graph[node]) if (!guarded[i] && to_sheep[node] == to_sheep[i] + 1) guard(i); } int main() { cin.tie(0)->sync_with_stdio(0); int n, k; cin >> n >> k; for (int i = 1; i < n; i++) { int u, v; cin >> u >> v; graph[u].push_back(v); graph[v].push_back(u); } queue<int> q; for (int i = 1; i <= k; i++) { cin >> sheep[i]; has_sheep[sheep[i]] = true; q.push(sheep[i]); to_sheep[sheep[i]] = 1; } while (q.size()) { int curr = q.front(); q.pop(); for (int i : graph[curr]) if (!to_sheep[i]) { to_sheep[i] = to_sheep[curr] + 1; q.push(i); } } dfs(); vector<int> ans; sort(sheep + 1, sheep + k + 1, [](int A, int B) { return depth[A] > depth[B]; }); for (int i = 1; i <= k; i++) if (!guarded[sheep[i]]) { int node = highest[sheep[i]]; ans.push_back(node); guard(node); } cout << ans.size() << '\n'; for (int i : ans) cout << i << ' '; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...