답안 #378382

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
378382 2021-03-16T15:53:39 Z mihai145 Election Campaign (JOI15_election_campaign) C++14
100 / 100
265 ms 49248 KB
#include <iostream>
#include <vector>

using namespace std;

const int NMAX = 1e5;
const int LGMAX = 17;

int N, M;
vector <int> g[NMAX + 2], gNoDad[NMAX + 2];

int kTime, timeIn[NMAX + 2], timeOut[NMAX + 2];
int h[NMAX + 2], dad[NMAX + 2], w[NMAX + 2];

int log2[2 * NMAX + 2], firstAp[NMAX + 2];
vector <int> rmq[LGMAX + 2];

void dfs(int node, int parent = 0) {
    dad[node] = parent;
    w[node] = 1;

    ++kTime;
    timeIn[node] = kTime;

    firstAp[node] = (int)rmq[0].size();
    rmq[0].push_back(node);

    for(int son : g[node]) {
        if(son != parent) {
            h[son] = h[node] + 1;
            gNoDad[node].push_back(son);
            dfs(son, node);
            w[node] += w[son];
            rmq[0].push_back(node);
        }
    }

    timeOut[node] = kTime;
}

int getMin(int x, int y) {
    if(h[x] < h[y]) {
        return x;
    }

    return y;
}

void buildRmq() {
    for(int i = 2; i <= 2 * N; i++) {
        log2[i] = log2[i / 2] + 1;
    }

    for(int i = 1; i <= LGMAX; i++) {
        if((1 << i) > (int)rmq[0].size()) {
            return ;
        }

        for(int j = 0; j < (int)rmq[0].size(); j++) {
            if((1 << i) + j > (int)rmq[0].size()) {
                break;
            } else {
                rmq[i].push_back(getMin(rmq[i - 1][j], rmq[i - 1][j + (1 << (i - 1))]));
            }
        }
    }
}

int queryRmq(int x, int y) {
    x = firstAp[x];
    y = firstAp[y];

    if(x > y) {
        swap(x, y);
    }

    int k = log2[y - x + 1];

    return getMin(rmq[k][x], rmq[k][y - (1 << k) + 1]);
}

vector <int> heavyOrder;
int head[NMAX + 2], pos[NMAX + 2], hs[NMAX + 2];

void dfsHeavy(int node, int heavyHead) {
    head[node] = heavyHead;
    heavyOrder.push_back(node);
    pos[node] = (int)heavyOrder.size();

    int heavySon = g[node][0];
    if(g[node].size() == 1) {
        if(g[node][0] == dad[node]) {
            return ;
        }
    } else {
        if(g[node][0] == dad[node]) {
            heavySon = g[node][1];
        }
    }

    for(int son : g[node]) {
        if(son != dad[node]) {
            if(w[son] > w[heavySon]) {
                heavySon = son;
            }
        }
    }

    hs[node] = heavySon;
    dfsHeavy(heavySon, heavyHead);

    for(int son : g[node]) {
        if(son != dad[node] && son != heavySon) {
            dfsHeavy(son, son);
        }
    }
}

int dp[NMAX + 2];

struct Road {
    int x, y, c;
};
vector <Road> roads[NMAX + 2];

struct Fenwick {
    int v[NMAX + 2];

    inline int LSB(int x) {
        return x & (-x);
    }

    void Update(int pos, int val) {
        for(int i = pos; i <= N; i += LSB(i)) {
            v[i] += val;
        }
    }

    int Sum(int pos) {
        if(pos <= 0) {
            return 0;
        }

        int ans = 0;
        for(int i = pos; i > 0; i -= LSB(i)) {
            ans += v[i];
        }

        return ans;
    }

    int Query(int st, int dr) {
        return Sum(dr) - Sum(st - 1);
    }
};
Fenwick aib;

int qr(int x, int y) {
    if(head[x] == head[y]) {
        if(pos[x] > pos[y]) {
            swap(x, y);
        }
        return aib.Query(pos[x], pos[y]);
    }

    if(h[head[x]] < h[head[y]]) {
        swap(x, y);
    }

    int ans = qr(dad[head[x]], y);
    if(pos[x] > pos[head[x]]) {
        ans += aib.Query(pos[head[x]], pos[x]);
    } else {
        ans += aib.Query(pos[x], pos[head[x]]);
    }

    x = head[x];
    ans -= dp[x];
    ans += dp[hs[dad[x]]];

    return ans;
}

void solve(int node, int parent = 0) {
    int sumDpSons = 0;
    for(int son : g[node]) {
        if(son != parent) {
            solve(son, node);
            sumDpSons += dp[son];
        }
    }

    dp[node] = sumDpSons;

    for(Road road : roads[node]) {
        int newDp = road.c;
        pair <int, int> miss = {0, 0};

        if(node != road.x) {
            int st = 0, dr = (int)gNoDad[node].size() - 1, sol = -1;

            while(st <= dr) {
                int mid = (st + dr) >> 1;
                int trg = gNoDad[node][mid];

                if(timeIn[trg] <= timeIn[road.x] && timeOut[road.x] <= timeOut[trg]) {
                    sol = trg;
                    break;
                }

                if(timeIn[trg] > timeOut[road.x]) {
                    dr = mid - 1;
                } else {
                    st = mid + 1;
                }
            }

            miss.first = sol;
            newDp += qr(miss.first, road.x);
            newDp += dp[hs[road.x]];
        }

        if(node != road.y) {
            int st = 0, dr = (int)gNoDad[node].size() - 1, sol = -1;

            while(st <= dr) {
                int mid = (st + dr) >> 1;
                int trg = gNoDad[node][mid];

                if(timeIn[trg] <= timeIn[road.y] && timeOut[road.y] <= timeOut[trg]) {
                    sol = trg;
                    break;
                }

                if(timeIn[trg] > timeOut[road.y]) {
                    dr = mid - 1;
                } else {
                    st = mid + 1;
                }
            }

            miss.second = sol;
            newDp += qr(miss.second, road.y);
            newDp += dp[hs[road.y]];
        }

        newDp = newDp + sumDpSons - dp[miss.first] - dp[miss.second];

        dp[node] = max(dp[node], newDp);
    }

    ///Update for dady!
    if(node != 1) {
        if(head[node] != head[dad[node]]) {
            aib.Update(pos[dad[node]], dp[node]);
        }
    }
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);

    cin >> N;

    for(int i = 1; i < N; i++) {
        int x, y;
        cin >> x >> y;
        g[x].push_back(y);
        g[y].push_back(x);
    }

    dfs(1);
    buildRmq();

    dfsHeavy(1, 1);

    cin >> M;

    for(int i = 1; i <= M; i++) {
        int x, y, c;
        cin >> x >> y >> c;

        int lca = queryRmq(x, y);
        roads[lca].push_back({x, y, c});
    }

    solve(1);

    cout << dp[1] << '\n';
    return 0;
}

Compilation message

election_campaign.cpp:15:5: warning: built-in function 'log2' declared as non-function [-Wbuiltin-declaration-mismatch]
   15 | int log2[2 * NMAX + 2], firstAp[NMAX + 2];
      |     ^~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 7404 KB Output is correct
2 Correct 5 ms 7532 KB Output is correct
3 Correct 6 ms 7404 KB Output is correct
4 Correct 6 ms 7620 KB Output is correct
5 Correct 149 ms 32484 KB Output is correct
6 Correct 88 ms 46048 KB Output is correct
7 Correct 138 ms 41256 KB Output is correct
8 Correct 103 ms 31076 KB Output is correct
9 Correct 130 ms 38876 KB Output is correct
10 Correct 105 ms 31344 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 7404 KB Output is correct
2 Correct 5 ms 7404 KB Output is correct
3 Correct 6 ms 7788 KB Output is correct
4 Correct 139 ms 48864 KB Output is correct
5 Correct 148 ms 48864 KB Output is correct
6 Correct 141 ms 48864 KB Output is correct
7 Correct 144 ms 48864 KB Output is correct
8 Correct 139 ms 48864 KB Output is correct
9 Correct 135 ms 48864 KB Output is correct
10 Correct 158 ms 48864 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 7404 KB Output is correct
2 Correct 5 ms 7404 KB Output is correct
3 Correct 6 ms 7788 KB Output is correct
4 Correct 139 ms 48864 KB Output is correct
5 Correct 148 ms 48864 KB Output is correct
6 Correct 141 ms 48864 KB Output is correct
7 Correct 144 ms 48864 KB Output is correct
8 Correct 139 ms 48864 KB Output is correct
9 Correct 135 ms 48864 KB Output is correct
10 Correct 158 ms 48864 KB Output is correct
11 Correct 13 ms 8556 KB Output is correct
12 Correct 144 ms 49120 KB Output is correct
13 Correct 147 ms 49248 KB Output is correct
14 Correct 143 ms 49120 KB Output is correct
15 Correct 145 ms 49248 KB Output is correct
16 Correct 141 ms 49120 KB Output is correct
17 Correct 147 ms 49248 KB Output is correct
18 Correct 143 ms 49120 KB Output is correct
19 Correct 139 ms 49120 KB Output is correct
20 Correct 141 ms 49120 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 259 ms 34916 KB Output is correct
2 Correct 142 ms 48992 KB Output is correct
3 Correct 219 ms 43616 KB Output is correct
4 Correct 180 ms 33504 KB Output is correct
5 Correct 216 ms 42676 KB Output is correct
6 Correct 190 ms 34016 KB Output is correct
7 Correct 214 ms 42336 KB Output is correct
8 Correct 238 ms 35172 KB Output is correct
9 Correct 141 ms 48992 KB Output is correct
10 Correct 215 ms 41068 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 7404 KB Output is correct
2 Correct 5 ms 7532 KB Output is correct
3 Correct 6 ms 7404 KB Output is correct
4 Correct 6 ms 7620 KB Output is correct
5 Correct 149 ms 32484 KB Output is correct
6 Correct 88 ms 46048 KB Output is correct
7 Correct 138 ms 41256 KB Output is correct
8 Correct 103 ms 31076 KB Output is correct
9 Correct 130 ms 38876 KB Output is correct
10 Correct 105 ms 31344 KB Output is correct
11 Correct 7 ms 7680 KB Output is correct
12 Correct 7 ms 7788 KB Output is correct
13 Correct 6 ms 7788 KB Output is correct
14 Correct 6 ms 7660 KB Output is correct
15 Correct 7 ms 7660 KB Output is correct
16 Correct 6 ms 7660 KB Output is correct
17 Correct 6 ms 7660 KB Output is correct
18 Correct 7 ms 7788 KB Output is correct
19 Correct 6 ms 7660 KB Output is correct
20 Correct 7 ms 7788 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 7404 KB Output is correct
2 Correct 5 ms 7532 KB Output is correct
3 Correct 6 ms 7404 KB Output is correct
4 Correct 6 ms 7620 KB Output is correct
5 Correct 149 ms 32484 KB Output is correct
6 Correct 88 ms 46048 KB Output is correct
7 Correct 138 ms 41256 KB Output is correct
8 Correct 103 ms 31076 KB Output is correct
9 Correct 130 ms 38876 KB Output is correct
10 Correct 105 ms 31344 KB Output is correct
11 Correct 5 ms 7404 KB Output is correct
12 Correct 5 ms 7404 KB Output is correct
13 Correct 6 ms 7788 KB Output is correct
14 Correct 139 ms 48864 KB Output is correct
15 Correct 148 ms 48864 KB Output is correct
16 Correct 141 ms 48864 KB Output is correct
17 Correct 144 ms 48864 KB Output is correct
18 Correct 139 ms 48864 KB Output is correct
19 Correct 135 ms 48864 KB Output is correct
20 Correct 158 ms 48864 KB Output is correct
21 Correct 13 ms 8556 KB Output is correct
22 Correct 144 ms 49120 KB Output is correct
23 Correct 147 ms 49248 KB Output is correct
24 Correct 143 ms 49120 KB Output is correct
25 Correct 145 ms 49248 KB Output is correct
26 Correct 141 ms 49120 KB Output is correct
27 Correct 147 ms 49248 KB Output is correct
28 Correct 143 ms 49120 KB Output is correct
29 Correct 139 ms 49120 KB Output is correct
30 Correct 141 ms 49120 KB Output is correct
31 Correct 259 ms 34916 KB Output is correct
32 Correct 142 ms 48992 KB Output is correct
33 Correct 219 ms 43616 KB Output is correct
34 Correct 180 ms 33504 KB Output is correct
35 Correct 216 ms 42676 KB Output is correct
36 Correct 190 ms 34016 KB Output is correct
37 Correct 214 ms 42336 KB Output is correct
38 Correct 238 ms 35172 KB Output is correct
39 Correct 141 ms 48992 KB Output is correct
40 Correct 215 ms 41068 KB Output is correct
41 Correct 7 ms 7680 KB Output is correct
42 Correct 7 ms 7788 KB Output is correct
43 Correct 6 ms 7788 KB Output is correct
44 Correct 6 ms 7660 KB Output is correct
45 Correct 7 ms 7660 KB Output is correct
46 Correct 6 ms 7660 KB Output is correct
47 Correct 6 ms 7660 KB Output is correct
48 Correct 7 ms 7788 KB Output is correct
49 Correct 6 ms 7660 KB Output is correct
50 Correct 7 ms 7788 KB Output is correct
51 Correct 243 ms 35680 KB Output is correct
52 Correct 148 ms 49120 KB Output is correct
53 Correct 215 ms 41504 KB Output is correct
54 Correct 173 ms 34020 KB Output is correct
55 Correct 264 ms 35388 KB Output is correct
56 Correct 146 ms 49120 KB Output is correct
57 Correct 212 ms 42336 KB Output is correct
58 Correct 186 ms 33892 KB Output is correct
59 Correct 249 ms 35492 KB Output is correct
60 Correct 145 ms 49120 KB Output is correct
61 Correct 213 ms 42464 KB Output is correct
62 Correct 190 ms 34528 KB Output is correct
63 Correct 261 ms 35748 KB Output is correct
64 Correct 142 ms 49120 KB Output is correct
65 Correct 223 ms 42912 KB Output is correct
66 Correct 174 ms 34020 KB Output is correct
67 Correct 265 ms 35620 KB Output is correct
68 Correct 147 ms 49120 KB Output is correct
69 Correct 206 ms 40480 KB Output is correct
70 Correct 188 ms 34276 KB Output is correct