# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
373068 |
2021-03-03T08:44:04 Z |
Kanon |
Sky Walking (IOI19_walk) |
C++14 |
|
2811 ms |
221232 KB |
#include <iostream>
#include <vector>
#include <memory.h>
#include <algorithm>
#include <set>
#include <map>
#define pb push_back
#define mp make_pair
using namespace std;
const int maxn = 1000000 + 10;
const long long inf = 1e18;
int n, m, X[maxn], Y[maxn], H[maxn], L[maxn], R[maxn], a[maxn], b[maxn], node, y_map[maxn];
vector<int> neiL[maxn], neiR[maxn];
long long dis[maxn];
vector<pair<int, long long>> adj[maxn];
map<pair<int, int>, int> nodes;
vector<int> all_y;
void devide(int idx)
{
memset(a, -1, sizeof(a));
memset(b, -1, sizeof(b));
vector<pair<pair<int, int>, int>> sky;
vector<pair<int, int>> st;
st.pb(mp(H[idx], idx));
for (int i = idx - 1; i >= 0; i--)
{
if (H[i] > st.back().first)
st.push_back(mp(H[i], i));
for (int j = 0; j < neiL[i].size(); j++)
{
int cur = neiL[i][j];
if (R[cur] > idx)
{
int pos = upper_bound(st.begin(), st.end(), mp(Y[cur], -1)) - st.begin();
a[cur] = st[pos].second;
}
}
}
st.clear();
st.pb(mp(H[idx], idx));
for (int i = idx + 1; i < n; i++)
{
if (H[i] > st.back().first)
st.push_back(mp(H[i], i));
for (int j = 0; j < neiR[i].size(); j++)
{
int cur = neiR[i][j];
if (L[cur] < idx)
{
int pos = upper_bound(st.begin(), st.end(), mp(Y[cur], -1)) - st.begin();
b[cur] = st[pos].second;
}
}
}
for (int i = 0; i < m; i++)
{
if (a[i] != -1)
{
if (a[i] != L[i])
sky.pb(mp(mp(L[i], a[i]), Y[i]));
if (a[i] != b[i])
sky.pb(mp(mp(a[i], b[i]), Y[i]));
if (b[i] != R[i])
sky.pb(mp(mp(b[i], R[i]), Y[i]));
}
else
sky.pb(mp(mp(L[i], R[i]), Y[i]));
}
for (int i = 0; i < n; i++)
{
neiL[i].clear();
neiR[i].clear();
}
m = sky.size();
for (int i = 0; i < m; i++)
{
L[i] = sky[i].first.first;
R[i] = sky[i].first.second;
Y[i] = sky[i].second;
neiL[L[i]].pb(i);
neiR[R[i]].pb(i);
}
}
long long dijkstra(int source, int sink)
{
set<pair<long long, int>> S;
for (int i = 0; i <= node; i++)
dis[i] = inf;
dis[source] = 0;
S.insert(mp(0, source));
while (S.size())
{
set<pair<long long, int>>::iterator it = S.begin();
long long dist = (*it).first;
int v = (*it).second;
S.erase(it);
for (int i = 0; i < adj[v].size(); i++)
{
int u = adj[v][i].first;
long long w = adj[v][i].second;
if (dist + w < dis[u])
{
S.erase(mp(dis[u], u));
dis[u] = dist + w;
S.insert(mp(dis[u], u));
}
}
}
if (dis[sink] == inf)
return -1;
return dis[sink];
}
int add_map(int x, int y)
{
if (!nodes[mp(x, y)])
nodes[mp(x, y)] = ++node;
return nodes[mp(x, y)];
}
void add_edge(int x1, int y1, int x2, int y2)
{
int u = add_map(x1, y1);
int v = add_map(x2, y2);
if (x1 == x2)
{
adj[u].push_back(mp(v, abs(y2 - y1)));
adj[v].push_back(mp(u, abs(y2 - y1)));
}
else
{
adj[u].push_back(mp(v, abs(x2 - x1)));
adj[v].push_back(mp(u, abs(x2 - x1)));
}
}
void build_graph()
{
set<int> line;
line.insert(0);
set<int>::iterator it;
map<int, int> st;
vector<int> set_res;
memset(y_map, -1, sizeof(y_map));
for (int i = 0; i < n; i++)
{
for (int j = 0; j < neiL[i].size(); j++)
{
int cur = neiL[i][j];
line.insert(-Y[cur]);
}
for (int j = 0; j < neiL[i].size(); j++)
{
int cur = neiL[i][j];
it = line.upper_bound(-Y[cur]);
int y2 = Y[cur];
int y1 = -(*it);
int y2_id = lower_bound(all_y.begin(), all_y.end(), y2) - all_y.begin() + 1;
int y1_id = lower_bound(all_y.begin(), all_y.end(), y1) - all_y.begin() + 1;
set_res.pb(y1_id);
set_res.pb(y2_id);
add_edge(X[i], y1, X[i], y2);
if (y_map[y1_id] != -1 && y1 != 0)
{
add_edge(X[i], y1, y_map[y1_id], y1);
}
}
for (int j = 0; j < neiR[i].size(); j++)
{
int cur = neiR[i][j];
it = line.upper_bound(-Y[cur]);
int y2 = Y[cur];
int y1 = -(*it);
int y2_id = lower_bound(all_y.begin(), all_y.end(), y2) - all_y.begin() + 1;
int y1_id = lower_bound(all_y.begin(), all_y.end(), y1) - all_y.begin() + 1;
set_res.pb(y1_id);
set_res.pb(y2_id);
add_edge(X[i], y1, X[i], y2);
add_edge(X[i], y2, y_map[y2_id], y2);
if (y_map[y1_id] != -1 && y1 != 0)
{
add_edge(X[i], y1, y_map[y1_id], y1);
}
}
for (int j = 0; j < set_res.size(); j++)
y_map[set_res[j]] = X[i];
set_res.clear();
for (int j = 0; j < neiR[i].size(); j++)
{
int cur = neiR[i][j];
int y2 = lower_bound(all_y.begin(), all_y.end(), Y[cur]) - all_y.begin() + 1;
y_map[y2] = -1;
line.erase(-Y[cur]);
}
for (int j = 0; j < neiL[i].size(); j++)
{
int cur = neiL[i][j];
int y2 = lower_bound(all_y.begin(), all_y.end(), Y[cur]) - all_y.begin() + 1;
y_map[y2] = X[i];
line.insert(-Y[cur]);
}
}
}
bool cmp(pair<int, pair<int, int> > aa, pair<int, pair<int, int> > bb){
if(aa.first < bb.first)
return true;
if(aa.first > bb.first)
return false;
return aa.second.first < bb.second.first;
}
void init(){
vector<pair<int, pair<int, int> > > tmp, nw;
for(int i = 0; i < m; i++)
tmp.push_back(mp(Y[i], mp(L[i], R[i])));
sort(tmp.begin(), tmp.end(), cmp);
for(int i = 0; i < m; i++){
if(tmp[i].second.first == tmp[i].second.second) continue;
int j = i;
int hei = tmp[i].first;
int lo = tmp[i].second.first;
int hi = tmp[i].second.second;
while(tmp[j].first == hei && tmp[j].second.first <= hi && tmp[j].second.first >= lo){
hi = max(hi, tmp[j].second.second);
j++;
}
nw.push_back(mp(hei, mp(lo, hi)));
i = j - 1;
}
m = nw.size();
for (int i = 0; i < m; i++)
{
L[i] = nw[i].second.first;
R[i] = nw[i].second.second;
Y[i] = nw[i].first;
neiL[L[i]].pb(i);
neiR[R[i]].pb(i);
}
}
long long min_distance(vector<int> XX, vector<int> HH, vector<int> LL, vector<int> RR, vector<int> YY, int S, int G)
{
n = XX.size();
m = LL.size();
for (int i = 0; i < n; i++)
{
X[i] = XX[i];
H[i] = HH[i];
}
for (int i = 0; i < m; i++)
{
L[i] = LL[i];
R[i] = RR[i];
Y[i] = YY[i];
all_y.push_back(Y[i]);
}
init();
all_y.push_back(0);
sort(all_y.begin(), all_y.end());
all_y.resize(unique(all_y.begin(), all_y.end()) - all_y.begin());
devide(S);
devide(G);
build_graph();
return dijkstra(add_map(X[S], 0), add_map(X[G], 0));
}
Compilation message
walk.cpp: In function 'void devide(int)':
walk.cpp:33:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
33 | for (int j = 0; j < neiL[i].size(); j++)
| ~~^~~~~~~~~~~~~~~~
walk.cpp:49:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
49 | for (int j = 0; j < neiR[i].size(); j++)
| ~~^~~~~~~~~~~~~~~~
walk.cpp: In function 'long long int dijkstra(int, int)':
walk.cpp:102:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
102 | for (int i = 0; i < adj[v].size(); i++)
| ~~^~~~~~~~~~~~~~~
walk.cpp: In function 'void build_graph()':
walk.cpp:152:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
152 | for (int j = 0; j < neiL[i].size(); j++)
| ~~^~~~~~~~~~~~~~~~
walk.cpp:157:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
157 | for (int j = 0; j < neiL[i].size(); j++)
| ~~^~~~~~~~~~~~~~~~
walk.cpp:173:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
173 | for (int j = 0; j < neiR[i].size(); j++)
| ~~^~~~~~~~~~~~~~~~
walk.cpp:191:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
191 | for (int j = 0; j < set_res.size(); j++)
| ~~^~~~~~~~~~~~~~~~
walk.cpp:195:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
195 | for (int j = 0; j < neiR[i].size(); j++)
| ~~^~~~~~~~~~~~~~~~
walk.cpp:202:21: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
202 | for (int j = 0; j < neiL[i].size(); j++)
| ~~^~~~~~~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
55 ms |
82540 KB |
Output is correct |
2 |
Correct |
56 ms |
82540 KB |
Output is correct |
3 |
Correct |
55 ms |
82540 KB |
Output is correct |
4 |
Correct |
56 ms |
82540 KB |
Output is correct |
5 |
Correct |
57 ms |
82540 KB |
Output is correct |
6 |
Correct |
55 ms |
82540 KB |
Output is correct |
7 |
Correct |
54 ms |
82628 KB |
Output is correct |
8 |
Correct |
54 ms |
82540 KB |
Output is correct |
9 |
Correct |
58 ms |
82540 KB |
Output is correct |
10 |
Correct |
61 ms |
82540 KB |
Output is correct |
11 |
Correct |
60 ms |
82540 KB |
Output is correct |
12 |
Correct |
52 ms |
82684 KB |
Output is correct |
13 |
Correct |
53 ms |
82548 KB |
Output is correct |
14 |
Correct |
52 ms |
82668 KB |
Output is correct |
15 |
Correct |
53 ms |
82540 KB |
Output is correct |
16 |
Correct |
53 ms |
82612 KB |
Output is correct |
17 |
Correct |
53 ms |
82540 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
52 ms |
82540 KB |
Output is correct |
2 |
Correct |
51 ms |
82540 KB |
Output is correct |
3 |
Correct |
747 ms |
133804 KB |
Output is correct |
4 |
Correct |
745 ms |
141604 KB |
Output is correct |
5 |
Correct |
492 ms |
126928 KB |
Output is correct |
6 |
Correct |
497 ms |
125800 KB |
Output is correct |
7 |
Correct |
496 ms |
127312 KB |
Output is correct |
8 |
Correct |
770 ms |
135916 KB |
Output is correct |
9 |
Correct |
650 ms |
137208 KB |
Output is correct |
10 |
Correct |
749 ms |
140280 KB |
Output is correct |
11 |
Correct |
650 ms |
130536 KB |
Output is correct |
12 |
Correct |
554 ms |
132728 KB |
Output is correct |
13 |
Correct |
742 ms |
144368 KB |
Output is correct |
14 |
Correct |
499 ms |
126448 KB |
Output is correct |
15 |
Correct |
585 ms |
130272 KB |
Output is correct |
16 |
Correct |
474 ms |
131488 KB |
Output is correct |
17 |
Correct |
431 ms |
131264 KB |
Output is correct |
18 |
Correct |
628 ms |
133160 KB |
Output is correct |
19 |
Correct |
71 ms |
85100 KB |
Output is correct |
20 |
Correct |
274 ms |
107916 KB |
Output is correct |
21 |
Correct |
402 ms |
131568 KB |
Output is correct |
22 |
Correct |
475 ms |
135212 KB |
Output is correct |
23 |
Correct |
785 ms |
144608 KB |
Output is correct |
24 |
Correct |
446 ms |
134136 KB |
Output is correct |
25 |
Correct |
403 ms |
130484 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
80 ms |
84772 KB |
Output is correct |
2 |
Correct |
1051 ms |
140768 KB |
Output is correct |
3 |
Correct |
1123 ms |
143984 KB |
Output is correct |
4 |
Correct |
1191 ms |
150512 KB |
Output is correct |
5 |
Correct |
1552 ms |
154608 KB |
Output is correct |
6 |
Correct |
1506 ms |
152056 KB |
Output is correct |
7 |
Correct |
476 ms |
119892 KB |
Output is correct |
8 |
Correct |
561 ms |
136496 KB |
Output is correct |
9 |
Correct |
1439 ms |
152628 KB |
Output is correct |
10 |
Correct |
559 ms |
132304 KB |
Output is correct |
11 |
Correct |
67 ms |
84588 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
80 ms |
84772 KB |
Output is correct |
2 |
Correct |
1051 ms |
140768 KB |
Output is correct |
3 |
Correct |
1123 ms |
143984 KB |
Output is correct |
4 |
Correct |
1191 ms |
150512 KB |
Output is correct |
5 |
Correct |
1552 ms |
154608 KB |
Output is correct |
6 |
Correct |
1506 ms |
152056 KB |
Output is correct |
7 |
Correct |
476 ms |
119892 KB |
Output is correct |
8 |
Correct |
561 ms |
136496 KB |
Output is correct |
9 |
Correct |
1439 ms |
152628 KB |
Output is correct |
10 |
Correct |
559 ms |
132304 KB |
Output is correct |
11 |
Correct |
67 ms |
84588 KB |
Output is correct |
12 |
Correct |
1116 ms |
143788 KB |
Output is correct |
13 |
Correct |
1025 ms |
150128 KB |
Output is correct |
14 |
Correct |
1530 ms |
154984 KB |
Output is correct |
15 |
Correct |
838 ms |
146928 KB |
Output is correct |
16 |
Correct |
844 ms |
142568 KB |
Output is correct |
17 |
Correct |
928 ms |
150520 KB |
Output is correct |
18 |
Correct |
855 ms |
146984 KB |
Output is correct |
19 |
Correct |
846 ms |
142568 KB |
Output is correct |
20 |
Correct |
557 ms |
119588 KB |
Output is correct |
21 |
Correct |
91 ms |
87660 KB |
Output is correct |
22 |
Correct |
595 ms |
137552 KB |
Output is correct |
23 |
Correct |
568 ms |
136844 KB |
Output is correct |
24 |
Correct |
536 ms |
130692 KB |
Output is correct |
25 |
Correct |
579 ms |
134096 KB |
Output is correct |
26 |
Correct |
487 ms |
130104 KB |
Output is correct |
27 |
Correct |
1583 ms |
154736 KB |
Output is correct |
28 |
Correct |
770 ms |
149752 KB |
Output is correct |
29 |
Correct |
1554 ms |
151920 KB |
Output is correct |
30 |
Correct |
483 ms |
120052 KB |
Output is correct |
31 |
Correct |
1444 ms |
152048 KB |
Output is correct |
32 |
Correct |
496 ms |
130896 KB |
Output is correct |
33 |
Correct |
529 ms |
133192 KB |
Output is correct |
34 |
Correct |
626 ms |
136912 KB |
Output is correct |
35 |
Correct |
559 ms |
136448 KB |
Output is correct |
36 |
Correct |
463 ms |
132940 KB |
Output is correct |
37 |
Correct |
423 ms |
131696 KB |
Output is correct |
38 |
Correct |
475 ms |
135024 KB |
Output is correct |
39 |
Correct |
776 ms |
144456 KB |
Output is correct |
40 |
Correct |
440 ms |
134304 KB |
Output is correct |
41 |
Correct |
405 ms |
130596 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
55 ms |
82540 KB |
Output is correct |
2 |
Correct |
56 ms |
82540 KB |
Output is correct |
3 |
Correct |
55 ms |
82540 KB |
Output is correct |
4 |
Correct |
56 ms |
82540 KB |
Output is correct |
5 |
Correct |
57 ms |
82540 KB |
Output is correct |
6 |
Correct |
55 ms |
82540 KB |
Output is correct |
7 |
Correct |
54 ms |
82628 KB |
Output is correct |
8 |
Correct |
54 ms |
82540 KB |
Output is correct |
9 |
Correct |
58 ms |
82540 KB |
Output is correct |
10 |
Correct |
61 ms |
82540 KB |
Output is correct |
11 |
Correct |
60 ms |
82540 KB |
Output is correct |
12 |
Correct |
52 ms |
82684 KB |
Output is correct |
13 |
Correct |
53 ms |
82548 KB |
Output is correct |
14 |
Correct |
52 ms |
82668 KB |
Output is correct |
15 |
Correct |
53 ms |
82540 KB |
Output is correct |
16 |
Correct |
53 ms |
82612 KB |
Output is correct |
17 |
Correct |
53 ms |
82540 KB |
Output is correct |
18 |
Correct |
52 ms |
82540 KB |
Output is correct |
19 |
Correct |
51 ms |
82540 KB |
Output is correct |
20 |
Correct |
747 ms |
133804 KB |
Output is correct |
21 |
Correct |
745 ms |
141604 KB |
Output is correct |
22 |
Correct |
492 ms |
126928 KB |
Output is correct |
23 |
Correct |
497 ms |
125800 KB |
Output is correct |
24 |
Correct |
496 ms |
127312 KB |
Output is correct |
25 |
Correct |
770 ms |
135916 KB |
Output is correct |
26 |
Correct |
650 ms |
137208 KB |
Output is correct |
27 |
Correct |
749 ms |
140280 KB |
Output is correct |
28 |
Correct |
650 ms |
130536 KB |
Output is correct |
29 |
Correct |
554 ms |
132728 KB |
Output is correct |
30 |
Correct |
742 ms |
144368 KB |
Output is correct |
31 |
Correct |
499 ms |
126448 KB |
Output is correct |
32 |
Correct |
585 ms |
130272 KB |
Output is correct |
33 |
Correct |
474 ms |
131488 KB |
Output is correct |
34 |
Correct |
431 ms |
131264 KB |
Output is correct |
35 |
Correct |
628 ms |
133160 KB |
Output is correct |
36 |
Correct |
71 ms |
85100 KB |
Output is correct |
37 |
Correct |
274 ms |
107916 KB |
Output is correct |
38 |
Correct |
402 ms |
131568 KB |
Output is correct |
39 |
Correct |
475 ms |
135212 KB |
Output is correct |
40 |
Correct |
785 ms |
144608 KB |
Output is correct |
41 |
Correct |
446 ms |
134136 KB |
Output is correct |
42 |
Correct |
403 ms |
130484 KB |
Output is correct |
43 |
Correct |
80 ms |
84772 KB |
Output is correct |
44 |
Correct |
1051 ms |
140768 KB |
Output is correct |
45 |
Correct |
1123 ms |
143984 KB |
Output is correct |
46 |
Correct |
1191 ms |
150512 KB |
Output is correct |
47 |
Correct |
1552 ms |
154608 KB |
Output is correct |
48 |
Correct |
1506 ms |
152056 KB |
Output is correct |
49 |
Correct |
476 ms |
119892 KB |
Output is correct |
50 |
Correct |
561 ms |
136496 KB |
Output is correct |
51 |
Correct |
1439 ms |
152628 KB |
Output is correct |
52 |
Correct |
559 ms |
132304 KB |
Output is correct |
53 |
Correct |
67 ms |
84588 KB |
Output is correct |
54 |
Correct |
1116 ms |
143788 KB |
Output is correct |
55 |
Correct |
1025 ms |
150128 KB |
Output is correct |
56 |
Correct |
1530 ms |
154984 KB |
Output is correct |
57 |
Correct |
838 ms |
146928 KB |
Output is correct |
58 |
Correct |
844 ms |
142568 KB |
Output is correct |
59 |
Correct |
928 ms |
150520 KB |
Output is correct |
60 |
Correct |
855 ms |
146984 KB |
Output is correct |
61 |
Correct |
846 ms |
142568 KB |
Output is correct |
62 |
Correct |
557 ms |
119588 KB |
Output is correct |
63 |
Correct |
91 ms |
87660 KB |
Output is correct |
64 |
Correct |
595 ms |
137552 KB |
Output is correct |
65 |
Correct |
568 ms |
136844 KB |
Output is correct |
66 |
Correct |
536 ms |
130692 KB |
Output is correct |
67 |
Correct |
579 ms |
134096 KB |
Output is correct |
68 |
Correct |
487 ms |
130104 KB |
Output is correct |
69 |
Correct |
1583 ms |
154736 KB |
Output is correct |
70 |
Correct |
770 ms |
149752 KB |
Output is correct |
71 |
Correct |
1554 ms |
151920 KB |
Output is correct |
72 |
Correct |
483 ms |
120052 KB |
Output is correct |
73 |
Correct |
1444 ms |
152048 KB |
Output is correct |
74 |
Correct |
496 ms |
130896 KB |
Output is correct |
75 |
Correct |
529 ms |
133192 KB |
Output is correct |
76 |
Correct |
626 ms |
136912 KB |
Output is correct |
77 |
Correct |
559 ms |
136448 KB |
Output is correct |
78 |
Correct |
463 ms |
132940 KB |
Output is correct |
79 |
Correct |
423 ms |
131696 KB |
Output is correct |
80 |
Correct |
475 ms |
135024 KB |
Output is correct |
81 |
Correct |
776 ms |
144456 KB |
Output is correct |
82 |
Correct |
440 ms |
134304 KB |
Output is correct |
83 |
Correct |
405 ms |
130596 KB |
Output is correct |
84 |
Correct |
78 ms |
85020 KB |
Output is correct |
85 |
Correct |
1209 ms |
147936 KB |
Output is correct |
86 |
Correct |
2113 ms |
181656 KB |
Output is correct |
87 |
Correct |
125 ms |
92904 KB |
Output is correct |
88 |
Correct |
124 ms |
92136 KB |
Output is correct |
89 |
Correct |
124 ms |
92776 KB |
Output is correct |
90 |
Correct |
64 ms |
83684 KB |
Output is correct |
91 |
Correct |
57 ms |
82668 KB |
Output is correct |
92 |
Correct |
79 ms |
85356 KB |
Output is correct |
93 |
Correct |
398 ms |
109988 KB |
Output is correct |
94 |
Correct |
94 ms |
87916 KB |
Output is correct |
95 |
Correct |
640 ms |
140040 KB |
Output is correct |
96 |
Correct |
571 ms |
137228 KB |
Output is correct |
97 |
Correct |
520 ms |
131160 KB |
Output is correct |
98 |
Correct |
542 ms |
134096 KB |
Output is correct |
99 |
Correct |
2811 ms |
221232 KB |
Output is correct |
100 |
Correct |
1036 ms |
150580 KB |
Output is correct |
101 |
Correct |
1936 ms |
176504 KB |
Output is correct |
102 |
Correct |
516 ms |
120172 KB |
Output is correct |
103 |
Correct |
497 ms |
130888 KB |
Output is correct |
104 |
Correct |
516 ms |
132808 KB |
Output is correct |
105 |
Correct |
634 ms |
134736 KB |
Output is correct |
106 |
Correct |
551 ms |
132200 KB |
Output is correct |
107 |
Correct |
649 ms |
136552 KB |
Output is correct |
108 |
Correct |
113 ms |
88044 KB |
Output is correct |
109 |
Correct |
1082 ms |
138728 KB |
Output is correct |
110 |
Correct |
832 ms |
149312 KB |
Output is correct |
111 |
Correct |
782 ms |
149628 KB |
Output is correct |
112 |
Correct |
570 ms |
134952 KB |
Output is correct |
113 |
Correct |
506 ms |
133384 KB |
Output is correct |