답안 #366866

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
366866 2021-02-15T13:28:51 Z ACmachine Nautilus (BOI19_nautilus) C++17
100 / 100
214 ms 1044 KB
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
	
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}

    
int main(){
 	ios_base::sync_with_stdio(false);
 	cin.tie(NULL); cout.tie(NULL);
	int r, c, m;
    cin >> r >> c >> m;
    vector<bitset<505>> grid(r);
    REP(i, r){
        string tm; cin >> tm;
        REP(j, c){
            if(tm[c - 1 - j] == '.')
                grid[i][j] = 1;
        }
    }
    vector<bitset<505>> initgrid = grid;
    string s; cin >> s;
    auto command = [&](vector<bitset<505>> &grid, char C){
        if(C == 'W'){
            REP(j, r){
                grid[j] <<= 1;
                grid[j][c] = 0;
            }    
        }
        else if(C == 'E'){
            REP(j, r){
                grid[j] >>= 1;  
            }
        }
        else if(C == 'N'){
            REP(j, r - 1){
                grid[j] = grid[j + 1];
            }
            grid[r - 1].reset();
        }
        else if(C == 'S'){
            REPD(j, r - 1){
                if(j == 0) continue;
                grid[j] = grid[j - 1];
            }
            grid[0].reset();
        } 
    };
    vector<vector<bitset<505>>> ngrids(4, vector<bitset<505>>(r));
    string cm = "SNWE";
    REP(i, s.length()){
        if(s[i] != '?'){
            command(grid, s[i]);
        }
        else{
            REP(j, 4){
                REP(k, r){
                    ngrids[j][k].reset(); 
                    ngrids[j][k] |= grid[k];
                }
                command(ngrids[j], cm[j]);
            }
            REP(j, r){
                grid[j].reset();
                REP(k, 4){
                    grid[j] |= ngrids[k][j];
                }
            }
        }
        REP(j, r){
            grid[j] &= initgrid[j];
        } 
    }
    int ans = 0;
    REP(i, r){
        ans += grid[i].count(); 
    }
    cout << ans << "\n";
	
    return 0;
}

Compilation message

nautilus.cpp: In function 'int main()':
nautilus.cpp:26:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::__cxx11::basic_string<char>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   26 | #define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
      |                                        ^
nautilus.cpp:28:18: note: in expansion of macro 'FOR'
   28 | #define REP(i,b) FOR(i,0,b,1)
      |                  ^~~
nautilus.cpp:128:5: note: in expansion of macro 'REP'
  128 |     REP(i, s.length()){
      |     ^~~
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 2 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 2 ms 364 KB Output is correct
19 Correct 2 ms 364 KB Output is correct
20 Correct 2 ms 364 KB Output is correct
21 Correct 2 ms 364 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 2 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 2 ms 364 KB Output is correct
19 Correct 2 ms 364 KB Output is correct
20 Correct 2 ms 364 KB Output is correct
21 Correct 2 ms 364 KB Output is correct
22 Correct 81 ms 876 KB Output is correct
23 Correct 85 ms 876 KB Output is correct
24 Correct 81 ms 876 KB Output is correct
25 Correct 95 ms 1044 KB Output is correct
26 Correct 77 ms 876 KB Output is correct
27 Correct 163 ms 876 KB Output is correct
28 Correct 170 ms 876 KB Output is correct
29 Correct 153 ms 1004 KB Output is correct
30 Correct 177 ms 876 KB Output is correct
31 Correct 163 ms 876 KB Output is correct
32 Correct 208 ms 876 KB Output is correct
33 Correct 210 ms 876 KB Output is correct
34 Correct 214 ms 876 KB Output is correct
35 Correct 209 ms 876 KB Output is correct
36 Correct 207 ms 876 KB Output is correct