답안 #366165

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
366165 2021-02-13T12:10:40 Z ACmachine Bulldozer (JOI17_bulldozer) C++17
75 / 100
1516 ms 50140 KB
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
	
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}

struct node{
    ll whole = 0, pref = 0, suf = 0;
    ll ans = 0;
    void apply(int l, int r, ll val){
        whole = val;
        pref = max(0ll, val);
        suf = max(0ll, val);
        ans = max(0ll, val);
    }
};
struct segtree{
    node comb(node const &a, node const &b){
        node res;
        res.whole = a.whole + b.whole;
        res.ans = max(a.ans, b.ans);
        res.ans = max(res.ans, a.suf + b.pref);
        res.pref = max(a.pref, a.whole + b.pref);
        res.suf = max(b.suf, b.whole + a.suf);
        return res;
    } 
    void push(int l, int r, int v){
        /* tree[v<<1].lazy += tree[v].lazy; */
        /* tree[v<<1|1].lazy += tree[v].lazy; */
        /* int mid = (l + r) >> 1; */
        /* tree[v<<1].ans += (mid - l) * tree[v].lazy; */
        /* tree[v<<1|1].ans += (r - mid)* tree[v].lazy; */
        /* tree[v].lazy = 0; */
    }
    int sz;
    vector<node> tree; 
    segtree(int _sz){ // tree is resized to default values set in node
        sz = 1; while(sz < _sz) sz<<=1;
        tree.resize(2*sz); 
    } 
    void build(vector<node> &init){
        for(int i = 0; i < sz; ++i) 
            if(i < init.size())
                tree[i+sz] = init[i];
        for(int i = sz-1; i > 0; --i)
            tree[i] = comb(tree[i<<1], tree[i<<1|1]);
    } 
    node query(int l, int r){return query0(l, r, 0, sz, 1);} 
    node query0(int l, int r, int beg, int end, int v){ 
        if(beg >= l && end <= r)
            return tree[v];
        push(beg, end, v);
        int mid = (beg + end) >> 1;
        node res;
        if(beg >= r || mid <= l) res = query0(l, r, mid, end, v<<1|1); //[beg, mid]
        else if(mid >= r || end <= l) res = query0(l, r, beg, mid, v<<1);
        else res = comb(query0(l, r, beg, mid, v<<1), query0(l, r, mid, end, v<<1|1));
        return res;
    } 
    template<typename... T>
    void upd(int l, int r, T ...args){upd0(l, r, 0, sz, 1, args...);}
    template<typename... T>
    void upd0(int l, int r, int beg, int end, int v, T ...args){
        if(beg >= r || end <= l)
            return;
        if(beg >= l && end <= r){
            tree[v].apply(beg, end, args...);
            return;
        }
        push(beg, end, v);
        int mid = (beg + end) >> 1;
        upd0(l, r, beg, mid, v<<1, args...);
        upd0(l, r, mid, end, v<<1|1, args...);
        tree[v] = comb(tree[v<<1], tree[v<<1|1]);
    } 
};

    
struct Frac{
    long long n, d;
    Frac(long long n, long long d){
        if(d == 0){
            this->d = 0;
            this->n = 1;
            return;
        } 
        this->n = n; this->d = d;
        long long g = __gcd(n, d); this->n/=g;  this->d/=g;
        if(this->d < 0){ this->n*=-1; this->d*=-1; };
    }
    Frac(long long n){
        this->n = n; d = 1;
    }
    Frac(){n = 0; d = 1;}
    
    Frac operator-(){return Frac(-n, d);}
    Frac operator+=(const Frac& other){return Frac(n*other.d + other.n*d, d*other.d);}
    Frac operator-=(const Frac& other){return Frac(n*other.d - other.n*d, d*other.d);}
    Frac operator*=(const Frac& other){return Frac(n*other.n, d*other.d);}
    Frac operator/=(const Frac& other){return Frac(n*other.d, d*other.n);}

    friend Frac operator+(Frac a, const Frac& b){ return a+=b; }
    friend Frac operator-(Frac a, const Frac& b){ return a-=b; }
    friend Frac operator*(Frac a, const Frac& b){ return a*=b; }
    friend Frac operator/(Frac a, const Frac& b){ return a/=b; }

    bool operator==(const Frac& other){ return n==other.n && d==other.d; }
    bool operator<(const Frac& other){ return n*other.d < other.n*d; }
    bool operator!=(const Frac& other){ return !((*this)==other);}
    
    friend string ts(const Frac& a){ return to_string(a.n) + "/" + to_string(a.d); }
    friend ostream& operator<<(ostream& out, Frac &a) { return out << ts(a); } 
};

int main(){
 	ios_base::sync_with_stdio(false);
 	cin.tie(NULL); cout.tie(NULL);
	int n; cin >> n;
    vector<array<ll, 3>> points(n);
    REP(i, n){
        cin >> points[i][0] >> points[i][1] >> points[i][2];
    }
    sort(all(points));
    vector<pair<Frac, array<int, 2>>> slope_changing_points;
    REP(i, n){
        REP(j, i){
            if(points[i][0] == points[j][0]) continue; 
            Frac slope = Frac(points[i][1] - points[j][1], points[i][0] - points[j][0]);
            array<int, 2> p = {j, i};
            slope_changing_points.pb(mp(slope, p));
        }
    }   
    sort(all(slope_changing_points), [](pair<Frac, array<int, 2>> lhs, pair<Frac, array<int, 2>> rhs){
        return lhs.ff < rhs.ff;
    });
    vi pos(n); REP(i, n) pos[i] = i;
    vector<node> init(n);
    REP(i, n) init[i].apply(0, 0, points[i][2]);
    segtree st(n); st.build(init);
    ll ans = st.query(0, n).ans;
    REP(i, slope_changing_points.size()){
        auto &vect = slope_changing_points[i].ss;
        swap(pos[vect[0]], pos[vect[1]]); 
        REP(j, 2) st.upd(pos[vect[j]], pos[vect[j]] + 1, points[vect[j]][2]);
        if(i == (int)slope_changing_points.size() - 1 || slope_changing_points[i].ff != slope_changing_points[i + 1].ff)
            ans = max(ans, st.query(0, n).ans); 
    }
    cout << ans << "\n";	
    return 0;
}

Compilation message

bulldozer.cpp: In member function 'void segtree::build(std::vector<node>&)':
bulldozer.cpp:120:18: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<node>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  120 |             if(i < init.size())
      |                ~~^~~~~~~~~~~~~
bulldozer.cpp: In function 'int main()':
bulldozer.cpp:26:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<Frac, std::array<int, 2> > >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   26 | #define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
      |                                        ^
bulldozer.cpp:28:18: note: in expansion of macro 'FOR'
   28 | #define REP(i,b) FOR(i,0,b,1)
      |                  ^~~
bulldozer.cpp:218:5: note: in expansion of macro 'REP'
  218 |     REP(i, slope_changing_points.size()){
      |     ^~~
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 620 KB Output is correct
2 Correct 2 ms 620 KB Output is correct
3 Correct 2 ms 620 KB Output is correct
4 Correct 3 ms 640 KB Output is correct
5 Incorrect 2 ms 620 KB Output isn't correct
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 620 KB Output is correct
2 Correct 3 ms 620 KB Output is correct
3 Correct 4 ms 620 KB Output is correct
4 Correct 3 ms 768 KB Output is correct
5 Correct 3 ms 620 KB Output is correct
6 Correct 3 ms 620 KB Output is correct
7 Correct 3 ms 620 KB Output is correct
8 Correct 3 ms 640 KB Output is correct
9 Correct 4 ms 620 KB Output is correct
10 Correct 3 ms 620 KB Output is correct
11 Correct 0 ms 364 KB Output is correct
12 Correct 0 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 0 ms 364 KB Output is correct
15 Correct 0 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 0 ms 364 KB Output is correct
18 Correct 0 ms 364 KB Output is correct
19 Correct 0 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 3 ms 620 KB Output is correct
22 Correct 3 ms 620 KB Output is correct
23 Correct 3 ms 620 KB Output is correct
24 Correct 3 ms 620 KB Output is correct
25 Correct 3 ms 620 KB Output is correct
26 Correct 3 ms 620 KB Output is correct
27 Correct 3 ms 620 KB Output is correct
28 Correct 3 ms 640 KB Output is correct
29 Correct 3 ms 640 KB Output is correct
30 Correct 3 ms 620 KB Output is correct
31 Correct 4 ms 620 KB Output is correct
32 Correct 3 ms 620 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 620 KB Output is correct
2 Correct 3 ms 620 KB Output is correct
3 Correct 4 ms 620 KB Output is correct
4 Correct 3 ms 768 KB Output is correct
5 Correct 3 ms 620 KB Output is correct
6 Correct 3 ms 620 KB Output is correct
7 Correct 3 ms 620 KB Output is correct
8 Correct 3 ms 640 KB Output is correct
9 Correct 4 ms 620 KB Output is correct
10 Correct 3 ms 620 KB Output is correct
11 Correct 0 ms 364 KB Output is correct
12 Correct 0 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 0 ms 364 KB Output is correct
15 Correct 0 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 0 ms 364 KB Output is correct
18 Correct 0 ms 364 KB Output is correct
19 Correct 0 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 3 ms 620 KB Output is correct
22 Correct 3 ms 620 KB Output is correct
23 Correct 3 ms 620 KB Output is correct
24 Correct 3 ms 620 KB Output is correct
25 Correct 3 ms 620 KB Output is correct
26 Correct 3 ms 620 KB Output is correct
27 Correct 3 ms 620 KB Output is correct
28 Correct 3 ms 640 KB Output is correct
29 Correct 3 ms 640 KB Output is correct
30 Correct 3 ms 620 KB Output is correct
31 Correct 4 ms 620 KB Output is correct
32 Correct 3 ms 620 KB Output is correct
33 Correct 1447 ms 49828 KB Output is correct
34 Correct 1426 ms 49980 KB Output is correct
35 Correct 1427 ms 49844 KB Output is correct
36 Correct 1424 ms 49852 KB Output is correct
37 Correct 1417 ms 49828 KB Output is correct
38 Correct 1424 ms 49964 KB Output is correct
39 Correct 1415 ms 49828 KB Output is correct
40 Correct 1428 ms 49956 KB Output is correct
41 Correct 1425 ms 49880 KB Output is correct
42 Correct 1436 ms 50140 KB Output is correct
43 Correct 1425 ms 49900 KB Output is correct
44 Correct 1373 ms 49836 KB Output is correct
45 Correct 1486 ms 49828 KB Output is correct
46 Correct 1436 ms 49832 KB Output is correct
47 Correct 1516 ms 49828 KB Output is correct
48 Correct 1433 ms 49992 KB Output is correct
49 Correct 1394 ms 49828 KB Output is correct
50 Correct 1385 ms 49828 KB Output is correct
51 Correct 1388 ms 49796 KB Output is correct
52 Correct 1394 ms 49828 KB Output is correct
53 Correct 1379 ms 49828 KB Output is correct
54 Correct 1376 ms 49828 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 620 KB Output is correct
2 Correct 3 ms 620 KB Output is correct
3 Correct 4 ms 620 KB Output is correct
4 Correct 3 ms 768 KB Output is correct
5 Correct 3 ms 620 KB Output is correct
6 Correct 3 ms 620 KB Output is correct
7 Correct 3 ms 620 KB Output is correct
8 Correct 3 ms 640 KB Output is correct
9 Correct 4 ms 620 KB Output is correct
10 Correct 3 ms 620 KB Output is correct
11 Correct 0 ms 364 KB Output is correct
12 Correct 0 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 0 ms 364 KB Output is correct
15 Correct 0 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 0 ms 364 KB Output is correct
18 Correct 0 ms 364 KB Output is correct
19 Correct 0 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 3 ms 620 KB Output is correct
22 Correct 3 ms 620 KB Output is correct
23 Correct 3 ms 620 KB Output is correct
24 Correct 3 ms 620 KB Output is correct
25 Correct 3 ms 620 KB Output is correct
26 Correct 3 ms 620 KB Output is correct
27 Correct 3 ms 620 KB Output is correct
28 Correct 3 ms 640 KB Output is correct
29 Correct 3 ms 640 KB Output is correct
30 Correct 3 ms 620 KB Output is correct
31 Correct 4 ms 620 KB Output is correct
32 Correct 3 ms 620 KB Output is correct
33 Correct 1447 ms 49828 KB Output is correct
34 Correct 1426 ms 49980 KB Output is correct
35 Correct 1427 ms 49844 KB Output is correct
36 Correct 1424 ms 49852 KB Output is correct
37 Correct 1417 ms 49828 KB Output is correct
38 Correct 1424 ms 49964 KB Output is correct
39 Correct 1415 ms 49828 KB Output is correct
40 Correct 1428 ms 49956 KB Output is correct
41 Correct 1425 ms 49880 KB Output is correct
42 Correct 1436 ms 50140 KB Output is correct
43 Correct 1425 ms 49900 KB Output is correct
44 Correct 1373 ms 49836 KB Output is correct
45 Correct 1486 ms 49828 KB Output is correct
46 Correct 1436 ms 49832 KB Output is correct
47 Correct 1516 ms 49828 KB Output is correct
48 Correct 1433 ms 49992 KB Output is correct
49 Correct 1394 ms 49828 KB Output is correct
50 Correct 1385 ms 49828 KB Output is correct
51 Correct 1388 ms 49796 KB Output is correct
52 Correct 1394 ms 49828 KB Output is correct
53 Correct 1379 ms 49828 KB Output is correct
54 Correct 1376 ms 49828 KB Output is correct
55 Correct 1430 ms 49828 KB Output is correct
56 Correct 1416 ms 49828 KB Output is correct
57 Correct 1420 ms 49828 KB Output is correct
58 Correct 1435 ms 49828 KB Output is correct
59 Correct 1420 ms 49828 KB Output is correct
60 Correct 1428 ms 49960 KB Output is correct
61 Correct 1424 ms 49992 KB Output is correct
62 Correct 1427 ms 49828 KB Output is correct
63 Correct 1431 ms 49964 KB Output is correct
64 Correct 1424 ms 49828 KB Output is correct
65 Correct 1460 ms 49828 KB Output is correct
66 Correct 1433 ms 49828 KB Output is correct
67 Correct 1425 ms 49828 KB Output is correct
68 Correct 1435 ms 49828 KB Output is correct
69 Correct 1425 ms 49828 KB Output is correct
70 Correct 1428 ms 49828 KB Output is correct
71 Correct 1433 ms 50024 KB Output is correct
72 Correct 1420 ms 49828 KB Output is correct
73 Correct 1418 ms 49828 KB Output is correct
74 Correct 1425 ms 50084 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 620 KB Output is correct
2 Correct 2 ms 620 KB Output is correct
3 Correct 2 ms 620 KB Output is correct
4 Correct 3 ms 640 KB Output is correct
5 Incorrect 2 ms 620 KB Output isn't correct
6 Halted 0 ms 0 KB -