Submission #366155

# Submission time Handle Problem Language Result Execution time Memory
366155 2021-02-13T11:31:48 Z KoD Fire (JOI20_ho_t5) C++17
100 / 100
509 ms 102128 KB
#line 1 "main.cpp"

/**
 * @title Template
 */

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
#include <cassert>
#include <stack>

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/other/range.cpp"

class range {
  struct iter {
    std::size_t itr;
    constexpr iter(std::size_t pos) noexcept: itr(pos) { }
    constexpr void operator ++ () noexcept { ++itr; }
    constexpr bool operator != (iter other) const noexcept { return itr != other.itr; }
    constexpr std::size_t operator * () const noexcept { return itr; }
  };

  struct reviter {
    std::size_t itr;
    constexpr reviter(std::size_t pos) noexcept: itr(pos) { }
    constexpr void operator ++ () noexcept { --itr; }
    constexpr bool operator != (reviter other) const noexcept { return itr != other.itr; }
    constexpr std::size_t operator * () const noexcept { return itr; }
  };

  const iter first, last;

public:
  constexpr range(std::size_t first, std::size_t last) noexcept: first(first), last(std::max(first, last)) { }
  constexpr iter begin() const noexcept { return first; }
  constexpr iter end() const noexcept { return last; }
  constexpr reviter rbegin() const noexcept { return reviter(*last - 1); } 
  constexpr reviter rend() const noexcept { return reviter(*first - 1); } 
};

/**
 * @title Range
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"

#include <type_traits>
#include <iterator>
#line 6 "/Users/kodamankod/Desktop/cpp_programming/Library/other/rev.cpp"

template <class T>
class rev_impl {
public:
  using iterator = decltype(std::rbegin(std::declval<T>()));

private:
  const iterator M_begin;
  const iterator M_end;

public:
  constexpr rev_impl(T &&cont) noexcept: M_begin(std::rbegin(cont)), M_end(std::rend(cont)) { }
  constexpr iterator begin() const noexcept { return M_begin; }
  constexpr iterator end() const noexcept { return M_end; }
};

template <class T>
constexpr decltype(auto) rev(T &&cont) {
  return rev_impl<T>(std::forward<T>(cont));
}

/**
 * @title Reverser
 */
#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/container/fenwick_tree.cpp"

#line 2 "/Users/kodamankod/Desktop/cpp_programming/Library/other/bit_operation.cpp"

#include <cstddef>
#include <cstdint>

constexpr size_t bit_ppc(const uint64_t x) { return __builtin_popcountll(x); }
constexpr size_t bit_ctzr(const uint64_t x) { return x == 0 ? 64 : __builtin_ctzll(x); }
constexpr size_t bit_ctzl(const uint64_t x) { return x == 0 ? 64 : __builtin_clzll(x); }
constexpr size_t bit_width(const uint64_t x) { return 64 - bit_ctzl(x); }
constexpr uint64_t bit_msb(const uint64_t x) { return x == 0 ? 0 : uint64_t(1) << (bit_width(x) - 1); }
constexpr uint64_t bit_lsb(const uint64_t x) { return x & (-x); }
constexpr uint64_t bit_cover(const uint64_t x) { return x == 0 ? 0 : bit_msb(2 * x - 1); }

constexpr uint64_t bit_rev(uint64_t x) {
  x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1);
  x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2);
  x = ((x >> 4) & 0x0F0F0F0F0F0F0F0F) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
  x = ((x >> 8) & 0x00FF00FF00FF00FF) | ((x & 0x00FF00FF00FF00FF) << 8);
  x = ((x >> 16) & 0x0000FFFF0000FFFF) | ((x & 0x0000FFFF0000FFFF) << 16);
  x = (x >> 32) | (x << 32);
  return x;
}

/**
 * @title Bit Operations
 */
#line 4 "/Users/kodamankod/Desktop/cpp_programming/Library/container/fenwick_tree.cpp"

#line 8 "/Users/kodamankod/Desktop/cpp_programming/Library/container/fenwick_tree.cpp"
#include <type_traits>

template <class T>
class fenwick_tree {
public:
  using value_type = T;
  using size_type = size_t;

private:
  std::vector<value_type> M_tree;

public:
  fenwick_tree() = default;
  explicit fenwick_tree(size_type size) { initialize(size); }

  void initialize(size_type size) {
    M_tree.assign(size + 1, value_type { });
  }

  void add(size_type index, const value_type& x) {
    assert(index < size());
    ++index;
    while (index <= size()) {
      M_tree[index] += x;
      index += bit_lsb(index);
    }
  }

  template <size_type Indexed = 1>
  value_type get(size_type index) const {
    assert(index < size());
    index += Indexed;
    value_type res{ };
    while (index > 0) {
      res += M_tree[index];
      index -= bit_lsb(index);
    }
    return res;
  }
  value_type fold(size_type first, size_type last) const {
    assert(first <= last);
    assert(last <= size());
    value_type res{};
    while (first < last) {
      res += M_tree[last];
      last -= bit_lsb(last);
    }
    while (last < first) {
      res -= M_tree[first];
      first -= bit_lsb(first);
    }
    return res;
  }

  template <class Func>
  size_type satisfies(const size_type left, Func &&func) const {
    assert(left <= size());
    if (func(value_type { })) return left;
    value_type val = -get<0>(left);
    size_type res = 0;
    for (size_type cur = bit_cover(size() + 1) >> 1; cur > 0; cur >>= 1) {
      if ((res + cur <= left) || (res + cur <= size() && !func(val + M_tree[res + cur]))) {
        val += M_tree[res + cur];
        res += cur;
      }
    }
    return res + 1;
  }

  void clear() {
    M_tree.clear();
    M_tree.shrink_to_fit();
  }
  size_type size() const {
    return M_tree.size() - 1;
  }
};

/**
 * @title Fenwick Tree
 */
#line 18 "main.cpp"

using i32 = std::int32_t;
using i64 = std::int64_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;

template <class T, T Div = 2>
constexpr T infty = std::numeric_limits<T>::max() / Div;

template <class T>
using Vec = std::vector<T>;

struct RangeAddSum {
  fenwick_tree<u64> a, b; // ax + b
  RangeAddSum(const usize size): a(size + 1), b(size + 1) { }
  void add(const usize l, const usize r, const u64 x) {
    a.add(l, x);
    a.add(r, -x);
    b.add(l, -x * l);
    b.add(r, x * r);
  }
  u64 fold(const usize l, const usize r) {
    return (r * a.get(r) + b.get(r)) - (l * a.get(l) + b.get(l));
  }
};

int main() {
  std::ios_base::sync_with_stdio(false);
  std::cin.tie(nullptr);
  usize N, Q;
  std::cin >> N >> Q;
  Vec<u64> S(N);
  for (auto &x: S) {
    std::cin >> x;
  }
  Vec<usize> left(N);
  {
    std::stack<std::pair<u64, usize>> stack;
    stack.emplace(infty<u64>, 0);
    for (auto i: range(0, N)) {
      while (stack.top().first <= S[i]) {
        stack.pop();
      }
      left[i] = stack.top().second;
      stack.emplace(S[i], i + N);
    }
  }
  Vec<usize> right(N);
  {
    std::stack<std::pair<u64, usize>> stack;
    stack.emplace(infty<u64>, 2 * N);
    for (auto i: rev(range(0, N))) {
      while (stack.top().first < S[i]) {
        stack.pop();
      }
      right[i] = stack.top().second;
      stack.emplace(S[i], i + N);
    }
  }
  Vec<Vec<std::pair<usize, u64>>> ops1(N), ops2(N);
  const auto add = [&](const usize l, const usize r, const u64 x) {
    ops1[0].emplace_back(l, x);
    ops2[0].emplace_back(r, -x);
    if (r - l < N) {
      ops1[r - l].emplace_back(l, -x);
      ops2[r - l].emplace_back(r, x);
    }
  };
  for (auto i: range(0, N)) {
    add(left[i] + 1, right[i], S[i]);
    add(left[i] + 1, i + N, -S[i]);
    add(i + 1 + N, right[i], -S[i]);
  }
  Vec<Vec<std::tuple<usize, usize, usize>>> qs1(N), qs2(N);
  for (auto i: range(0, Q)) {
    usize t, l, r;
    std::cin >> t >> l >> r;
    if (t == N) {
      t = N - 1;
    }
    l += N - 1;
    r += N;
    qs1[t].emplace_back(i, l - t, r - t);
    qs2[t].emplace_back(i, l, r);
  }
  RangeAddSum seg1(2 * N), seg2(2 * N);
  Vec<u64> ans(Q);
  for (auto i: range(0, N)) {
    for (const auto [k, x]: ops1[i]) {
      seg1.add(k, 2 * N, x);
    }    
    for (const auto [k, x]: ops2[i]) {
      seg2.add(k, 2 * N, x);
    }
    for (const auto [k, l, r]: qs1[i]) {
      ans[k] += seg1.fold(l, r);
    }
    for (const auto [k, l, r]: qs2[i]) {
      ans[k] += seg2.fold(l, r);
    }
  }
  for (const auto x: ans) {
    std::cout << x << '\n';
  }  
  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 492 KB Output is correct
3 Correct 1 ms 492 KB Output is correct
4 Correct 1 ms 512 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 492 KB Output is correct
8 Correct 1 ms 492 KB Output is correct
9 Correct 1 ms 492 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 1 ms 492 KB Output is correct
12 Correct 1 ms 492 KB Output is correct
13 Correct 1 ms 512 KB Output is correct
14 Correct 1 ms 492 KB Output is correct
15 Correct 1 ms 492 KB Output is correct
16 Correct 1 ms 492 KB Output is correct
17 Correct 1 ms 492 KB Output is correct
18 Correct 1 ms 492 KB Output is correct
19 Correct 1 ms 492 KB Output is correct
20 Correct 1 ms 492 KB Output is correct
21 Correct 1 ms 492 KB Output is correct
22 Correct 1 ms 492 KB Output is correct
23 Correct 1 ms 492 KB Output is correct
24 Correct 1 ms 492 KB Output is correct
25 Correct 1 ms 492 KB Output is correct
26 Correct 1 ms 492 KB Output is correct
27 Correct 1 ms 492 KB Output is correct
28 Correct 1 ms 492 KB Output is correct
29 Correct 1 ms 492 KB Output is correct
30 Correct 1 ms 492 KB Output is correct
31 Correct 1 ms 492 KB Output is correct
32 Correct 1 ms 492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 300 ms 95932 KB Output is correct
3 Correct 308 ms 93404 KB Output is correct
4 Correct 304 ms 94408 KB Output is correct
5 Correct 316 ms 101864 KB Output is correct
6 Correct 306 ms 96488 KB Output is correct
7 Correct 309 ms 96464 KB Output is correct
8 Correct 326 ms 102080 KB Output is correct
9 Correct 310 ms 96372 KB Output is correct
10 Correct 295 ms 93020 KB Output is correct
11 Correct 321 ms 97664 KB Output is correct
12 Correct 296 ms 93808 KB Output is correct
13 Correct 327 ms 101448 KB Output is correct
14 Correct 312 ms 101848 KB Output is correct
15 Correct 315 ms 99180 KB Output is correct
16 Correct 301 ms 94040 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 478 ms 95588 KB Output is correct
3 Correct 461 ms 94300 KB Output is correct
4 Correct 499 ms 99576 KB Output is correct
5 Correct 474 ms 94588 KB Output is correct
6 Correct 461 ms 95636 KB Output is correct
7 Correct 452 ms 96024 KB Output is correct
8 Correct 455 ms 95452 KB Output is correct
9 Correct 463 ms 94260 KB Output is correct
10 Correct 454 ms 93400 KB Output is correct
11 Correct 469 ms 99276 KB Output is correct
12 Correct 464 ms 98384 KB Output is correct
13 Correct 467 ms 98744 KB Output is correct
14 Correct 454 ms 94572 KB Output is correct
15 Correct 473 ms 99052 KB Output is correct
16 Correct 455 ms 98152 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 430 ms 85588 KB Output is correct
2 Correct 426 ms 85108 KB Output is correct
3 Correct 450 ms 87316 KB Output is correct
4 Correct 440 ms 85428 KB Output is correct
5 Correct 442 ms 85792 KB Output is correct
6 Correct 444 ms 86056 KB Output is correct
7 Correct 442 ms 87484 KB Output is correct
8 Correct 435 ms 86296 KB Output is correct
9 Correct 448 ms 85532 KB Output is correct
10 Correct 451 ms 86552 KB Output is correct
11 Correct 457 ms 85724 KB Output is correct
12 Correct 453 ms 86232 KB Output is correct
13 Correct 460 ms 86052 KB Output is correct
14 Correct 449 ms 86092 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 492 KB Output is correct
3 Correct 1 ms 492 KB Output is correct
4 Correct 1 ms 512 KB Output is correct
5 Correct 1 ms 492 KB Output is correct
6 Correct 1 ms 492 KB Output is correct
7 Correct 1 ms 492 KB Output is correct
8 Correct 1 ms 492 KB Output is correct
9 Correct 1 ms 492 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 1 ms 492 KB Output is correct
12 Correct 1 ms 492 KB Output is correct
13 Correct 1 ms 512 KB Output is correct
14 Correct 1 ms 492 KB Output is correct
15 Correct 1 ms 492 KB Output is correct
16 Correct 1 ms 492 KB Output is correct
17 Correct 1 ms 492 KB Output is correct
18 Correct 1 ms 492 KB Output is correct
19 Correct 1 ms 492 KB Output is correct
20 Correct 1 ms 492 KB Output is correct
21 Correct 1 ms 492 KB Output is correct
22 Correct 1 ms 492 KB Output is correct
23 Correct 1 ms 492 KB Output is correct
24 Correct 1 ms 492 KB Output is correct
25 Correct 1 ms 492 KB Output is correct
26 Correct 1 ms 492 KB Output is correct
27 Correct 1 ms 492 KB Output is correct
28 Correct 1 ms 492 KB Output is correct
29 Correct 1 ms 492 KB Output is correct
30 Correct 1 ms 492 KB Output is correct
31 Correct 1 ms 492 KB Output is correct
32 Correct 1 ms 492 KB Output is correct
33 Correct 300 ms 95932 KB Output is correct
34 Correct 308 ms 93404 KB Output is correct
35 Correct 304 ms 94408 KB Output is correct
36 Correct 316 ms 101864 KB Output is correct
37 Correct 306 ms 96488 KB Output is correct
38 Correct 309 ms 96464 KB Output is correct
39 Correct 326 ms 102080 KB Output is correct
40 Correct 310 ms 96372 KB Output is correct
41 Correct 295 ms 93020 KB Output is correct
42 Correct 321 ms 97664 KB Output is correct
43 Correct 296 ms 93808 KB Output is correct
44 Correct 327 ms 101448 KB Output is correct
45 Correct 312 ms 101848 KB Output is correct
46 Correct 315 ms 99180 KB Output is correct
47 Correct 301 ms 94040 KB Output is correct
48 Correct 478 ms 95588 KB Output is correct
49 Correct 461 ms 94300 KB Output is correct
50 Correct 499 ms 99576 KB Output is correct
51 Correct 474 ms 94588 KB Output is correct
52 Correct 461 ms 95636 KB Output is correct
53 Correct 452 ms 96024 KB Output is correct
54 Correct 455 ms 95452 KB Output is correct
55 Correct 463 ms 94260 KB Output is correct
56 Correct 454 ms 93400 KB Output is correct
57 Correct 469 ms 99276 KB Output is correct
58 Correct 464 ms 98384 KB Output is correct
59 Correct 467 ms 98744 KB Output is correct
60 Correct 454 ms 94572 KB Output is correct
61 Correct 473 ms 99052 KB Output is correct
62 Correct 455 ms 98152 KB Output is correct
63 Correct 430 ms 85588 KB Output is correct
64 Correct 426 ms 85108 KB Output is correct
65 Correct 450 ms 87316 KB Output is correct
66 Correct 440 ms 85428 KB Output is correct
67 Correct 442 ms 85792 KB Output is correct
68 Correct 444 ms 86056 KB Output is correct
69 Correct 442 ms 87484 KB Output is correct
70 Correct 435 ms 86296 KB Output is correct
71 Correct 448 ms 85532 KB Output is correct
72 Correct 451 ms 86552 KB Output is correct
73 Correct 457 ms 85724 KB Output is correct
74 Correct 453 ms 86232 KB Output is correct
75 Correct 460 ms 86052 KB Output is correct
76 Correct 449 ms 86092 KB Output is correct
77 Correct 486 ms 96064 KB Output is correct
78 Correct 488 ms 97512 KB Output is correct
79 Correct 505 ms 99572 KB Output is correct
80 Correct 509 ms 96580 KB Output is correct
81 Correct 509 ms 96224 KB Output is correct
82 Correct 484 ms 96976 KB Output is correct
83 Correct 480 ms 96620 KB Output is correct
84 Correct 495 ms 95464 KB Output is correct
85 Correct 500 ms 99512 KB Output is correct
86 Correct 490 ms 96052 KB Output is correct
87 Correct 411 ms 101320 KB Output is correct
88 Correct 410 ms 101508 KB Output is correct
89 Correct 388 ms 96868 KB Output is correct
90 Correct 395 ms 100836 KB Output is correct
91 Correct 401 ms 97340 KB Output is correct
92 Correct 376 ms 96324 KB Output is correct
93 Correct 405 ms 97920 KB Output is correct
94 Correct 418 ms 102128 KB Output is correct
95 Correct 425 ms 101756 KB Output is correct
96 Correct 400 ms 97864 KB Output is correct
97 Correct 398 ms 98540 KB Output is correct
98 Correct 373 ms 96748 KB Output is correct
99 Correct 419 ms 97644 KB Output is correct
100 Correct 400 ms 98296 KB Output is correct
101 Correct 386 ms 97304 KB Output is correct
102 Correct 414 ms 101192 KB Output is correct