이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
using ll = long long;
using ld = long double;
const int N = 1e5 + 2;
const ll Inf = 1e17;
int n, s, d;
int a[N], id[N], now[N];
ll dp[N], ans(0);
struct node
{
int v;
ll sum;
node()
{
v = sum = 0;
}
void combine(const node &a, const node &b)
{
v = a.v + b.v;
sum = a.sum + b.sum;
}
};
struct SegmentTree
{
node st[N * 4];
bool ck[N];
SegmentTree()
{
memset(ck, 0, sizeof ck);
}
void Update(int id, int l, int r, int pos, ll v)
{
if (l > pos || r < pos)
return;
if (l == pos && l == r)
{
st[id].v ^= 1;
st[id].sum += v;
return;
}
Update(id << 1, l, (l + r) / 2, pos, v);
Update(id << 1 | 1, (l + r) / 2 + 1, r, pos, v);
st[id].combine(st[id << 1], st[id << 1 | 1]);
}
void Update(int v)
{
Update(1, 1, n, v, (ck[v] ? -1 : 1) * a[id[v]]);
ck[v] ^= 1;
}
ll Get(int id, int l, int r, int d)
{
if (l == r)
return st[id].sum;
if (st[id << 1].v >= d)
return Get(id << 1, l, (l + r) / 2, d);
else
return st[id << 1].sum + Get(id << 1 | 1, (l + r) / 2 + 1, r, d - st[id << 1].v);
}
ll Get(int d)
{
if (d <= 0)
return 0;
return Get(1, 1, n, d);
}
} f;
template <class T>
void Max(T &x, const T &y)
{
if (x < y)
x = y;
}
void DAC(int l, int r, int optl, int optr)
{
if (l > r)
return;
int optmid(-1);
int mid = (l + r) / 2;
for (int i = r; i > mid; --i)
f.Update(now[i]);
for (int i = optl; i <= optr; ++i)
{
ll v = f.Get(d - (mid - s + mid - i));
if (dp[mid] < v)
{
dp[mid] = v;
optmid = i;
}
f.Update(now[i]);
}
Max(ans, dp[mid]);
for (int i = optr; i >= optl; --i)
f.Update(now[i]);
if (f.ck[now[mid]])
f.Update(now[mid]);
DAC(l, mid - 1, optl, optmid);
for (int i = optl; i < optmid; ++i)
f.Update(now[i]);
for (int i = r; i > mid; --i)
f.Update(now[i]);
if (!f.ck[now[mid]])
f.Update(now[mid]);
DAC(mid + 1, r, optmid, optr);
for (int i = optl; i < optmid; ++i)
f.Update(now[i]);
}
void Prepare()
{
sort(id + 1, id + n + 1, [&](const int &x, const int &y) {
return a[x] > a[y];
});
for (int i = 1; i <= n; ++i)
{
now[id[i]] = i;
dp[i] = -Inf;
}
for (int i = 1; i <= n && i < s + d; ++i)
f.Update(now[i]);
DAC(s, min(n, s + d - 1), 1, s);
for (int i = 1; i <= n; ++i)
if (f.ck[i])
f.Update(i);
for (int i = s; i <= n && i <= s + d; ++i)
{
f.Update(now[i]);
ans = max(ans, f.Get(d - (i - s)));
}
for (int i = 1; i <= n; ++i)
if (f.ck[i])
f.Update(i);
}
ll findMaxAttraction(int input1, int input2, int input3, int arr[])
{
n = input1;
s = ++input2;
d = input3;
for (int i = 1; i <= n; ++i)
{
id[i] = i;
a[i] = arr[i - 1];
}
Prepare();
reverse(a + 1, a + n + 1);
s = n - s + 1;
Prepare();
return ans;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |