#include <bits/stdc++.h>
using namespace std;
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;
#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};
#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif
#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "["; REP(i, v.size()) out << v[i] << ", "; out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
int n, T; cin >> n >> T;
vector<vector<array<int, 2>>> dp(n, vector<array<int, 2>>(n, {0, 0}));
vector<vector<bool>> mat(n, vector<bool>(n, false));
REP(i, n){
int x; cin >> x;
while(x != 0){
x--;
mat[i][x] = true;
cin >> x;
}
}
// dp[i][j][d] -> som na i, obluk mozem kratcat j dopredu / dozadu podla d
auto calc_dp = [&](){
REP(i, n){
dp[i][0][0] = dp[i][0][1] = 0;
}
FOR(ln, 1, n, 1){
REP(i, n){
FOR(k, 1, ln + 1, 1){
int nxt = (i + k) % n;
if(!mat[i][nxt]) continue;
dp[i][ln][0] = max(dp[i][ln][0], 1 + dp[nxt][k - 1][1]);
dp[i][ln][0] = max(dp[i][ln][0], 1 + dp[nxt][ln - k][0]);
}
FOR(k, 1, ln + 1, 1){
int nxt = (i - k);
if(nxt < 0) nxt += n;
if(!mat[i][nxt]) continue;
dp[i][ln][1] = max(dp[i][ln][1], 1 + dp[nxt][k - 1][0]);
dp[i][ln][1] = max(dp[i][ln][1], 1 + dp[nxt][ln - k][1]);
}
}
}
};
calc_dp();
int maxs_without_intersection = 0;
REP(i, n){
if(dp[i][n - 1][0] > dp[maxs_without_intersection][n - 1][0])
maxs_without_intersection = i;
}
if(T == 0){
cout << dp[maxs_without_intersection][n - 1][0] << "\n";
cout << maxs_without_intersection + 1 << "\n";
return 0;
}
// ak chcem len raz intersectnut prvy tah;
// spravim prvy tah, dostanem 2 obluky; v jednom obluku musim robit zatacky len rovnakym smerom; potom skocim na druhy obluk a transitionujem do hornej dp tabulky;
// dp_t[i][j][0] -> maximalny pocet tahov jednym smerom ak sa musim posunut presne o j krokov do smeru; -1 ak sa neda
vector<vector<array<int, 2>>> dp_t(n, vector<array<int, 2>>(n, {-1, -1}));
auto calc_dpt = [&](){
REP(i, n){
dp_t[i][0][0] = dp_t[i][0][1] = 0;
FOR(k, 1, n, 1){
int nxt = (i + k) % n;
if(mat[i][nxt])
dp_t[i][k][0] = 1;
int nxt2 = (i - k);
if(nxt2 < 0) nxt2 += n;
if(mat[i][nxt2])
dp_t[i][k][1] = 1;
}
}
FOR(ln, 1, n, 1){
REP(i, n){
FOR(k, 1, ln + 1, 1){
int nxt = (i + k) % n;
if(dp_t[i][k][0] == -1) continue;
if(dp_t[nxt][ln - k][0] != -1)
dp_t[i][ln][0] = max(dp_t[i][ln][0], dp_t[i][k][0] + dp_t[nxt][ln - k][0]);
}
FOR(k, 1, ln + 1, 1){
int nxt = i - k;
if(nxt < 0) nxt += n;
if(dp_t[i][k][1] == -1) continue;
if(dp_t[nxt][ln - k][1] != -1)
dp_t[i][ln][1] = max(dp_t[i][ln][1], dp_t[i][k][1] + dp_t[nxt][ln - k][1]);
}
}
}
};
calc_dpt();
// spajam tie obluky; bruteforce zaciatocneho pristavu, bruteforce prveho tahu, bruteforce druheho tahu, bruteforce 3 tahu -> O(n^4);
// ak zmazeme bruteforce 2 tahu, dostneme sa na O(n^3);
// druhy tah pozostava z viacerych tahov jednym smerom -> dpt; po 3 zvysok je zaciatocne dp;
int maxs_intersection = 0;
int maxs_intersection_value = 0;
REP(i, n){
FOR(k, 1, n, 1){ // clockwise prve tahy ->tahy jednym smerom
int d1 = (i + k) % n;
FOR(g, 1, (n - 1) - k + 1, 1){ // pokracujem clockwise
int d2 = (d1 + g) % n;
FOR(l, 1, k, 1){
int d3 = (i + l) % n; // volne z prveho tahu
if(!mat[d2][d3]) continue;
if(dp_t[d1][g][0] == -1) continue;
int re = 1 + dp_t[d1][g][0] + 1 + max(dp[d3][k - l - 1][0], dp[d3][l - 1][1]);
if(re > maxs_intersection_value){
maxs_intersection_value = re;
maxs_intersection = i;
}
}
}
}
FOR(k, 1, n, 1){ // counterclockwise tahy;
int d1 = (i - k);
if(d1 < 0) d1 += n;
FOR(g, 1, (n - 1) - k + 1, 1){
int d2 = (d1 - g);
if(d2 < 0) d2 += n;
FOR(l, 1, k, 1){
int d3 = (i - l);
if(d3 < 0) d3 += n;
if(!mat[d2][d3]) continue;
if(dp_t[d1][g][1] == -1) continue;
int re = 1 + dp_t[d1][g][1] + 1 + max(dp[d3][k - l - 1][1], dp[d3][l - 1][0]);
if(re > maxs_intersection_value){
maxs_intersection_value = re;
maxs_intersection = i;
}
}
}
}
}
if(maxs_intersection_value > dp[maxs_without_intersection][n - 1][0]){
cout << maxs_intersection_value << "\n";
cout << maxs_intersection + 1 << "\n";
}
else{
cout << dp[maxs_without_intersection][n - 1][0] << "\n";
cout << maxs_without_intersection + 1 << "\n";
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
364 KB |
Output is correct |
2 |
Correct |
1 ms |
364 KB |
Output is correct |
3 |
Incorrect |
3 ms |
364 KB |
Output isn't correct |
4 |
Correct |
7 ms |
364 KB |
Output is correct |
5 |
Correct |
2 ms |
384 KB |
Output is correct |
6 |
Incorrect |
30 ms |
364 KB |
Output isn't correct |
7 |
Correct |
3 ms |
384 KB |
Output is correct |
8 |
Incorrect |
75 ms |
492 KB |
Output isn't correct |
9 |
Correct |
7 ms |
492 KB |
Output is correct |
10 |
Correct |
7 ms |
364 KB |
Output is correct |
11 |
Correct |
9 ms |
364 KB |
Output is correct |
12 |
Incorrect |
2851 ms |
1056 KB |
Output isn't correct |
13 |
Execution timed out |
3068 ms |
1772 KB |
Time limit exceeded |
14 |
Correct |
292 ms |
1704 KB |
Output is correct |
15 |
Execution timed out |
3076 ms |
4460 KB |
Time limit exceeded |
16 |
Execution timed out |
3081 ms |
4460 KB |
Time limit exceeded |
17 |
Execution timed out |
3081 ms |
4460 KB |
Time limit exceeded |
18 |
Correct |
513 ms |
2412 KB |
Output is correct |
19 |
Execution timed out |
3033 ms |
4460 KB |
Time limit exceeded |
20 |
Execution timed out |
3043 ms |
4348 KB |
Time limit exceeded |