Submission #355186

# Submission time Handle Problem Language Result Execution time Memory
355186 2021-01-22T09:51:18 Z ryansee Comparing Plants (IOI20_plants) C++14
27 / 100
3567 ms 202612 KB
#include "plants.h"
 
#include "bits/stdc++.h"
using namespace std;
 
#define FAST ios_base::sync_with_stdio(false); cin.tie(0);
#define pb push_back
#define eb emplace_back
#define ins insert
#define f first
#define s second
#define cbr cerr<<"hi\n"
#define mmst(x, v) memset((x), v, sizeof ((x)))
#define siz(x) ll(x.size())
#define all(x) (x).begin(), (x).end()
#define lbd(x,y) (lower_bound(all(x),y)-x.begin())
#define ubd(x,y) (upper_bound(all(x),y)-x.begin())
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
inline long long rand(long long x, long long y) { return rng() % (y+1-x) + x; } //inclusivesss
string inline to_string(char c) {string s(1,c);return s;} template<typename T> inline T gcd(T a,T b){ return a==0?llabs(b):gcd(b%a,a); }
 
using ll=int; 
using ld=long double;
#define FOR(i,s,e) for(ll i=s;i<=ll(e);++i)
#define DEC(i,s,e) for(ll i=s;i>=ll(e);--i)
using pi=pair<ll,ll>; using spi=pair<ll,pi>; using dpi=pair<pi,pi>; 
 
long long LLINF = 1e18;
int INF = 1e9+1e6;
#define MAXN (200002)
 
int n, start, k;
vector<int> R;
ll A[MAXN*2];
inline int cy(ll x) {
	if(x < 0) x += n;
	if(x >= n) x -= n;
	return x;
}
int dist(int x,int y) {
	if(x > y) swap(x, y);
	return min(y-x, n-y+x);	
}
 
struct node {
	int s,e,m;
	spi v;
	ll lazy[3];
	node*l,*r;
	node(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v=spi(INF, pi(0, -1)), mmst(lazy, 0);
		if(s^e)l=new node(s,m),r=new node(m+1,e),v=min(l->v,r->v);
		else v=spi(R[s], pi(0, s));
	}
	void value() {
		v.f += lazy[0], v.s.f += lazy[1];
		if(s^e) FOR(i,0,1) l->lazy[i]+=lazy[i], r->lazy[i]+=lazy[i];
		lazy[0]=lazy[1]=0;
	}
	void update(int x,int y,pi nval,pi nval2=pi(0, 0)) {
		if(s==x&&e==y) {
			if(nval.s <= 1) lazy[nval.s] += nval.f;
			else lazy[nval.s] = max(lazy[nval.s], nval.f);
			if(nval2.s <= 1) lazy[nval2.s] += nval2.f;
			else lazy[nval2.s] = max(lazy[nval2.s], nval2.f);
			return;
		}
		if(x>m) r->update(x,y,nval,nval2);
		else if(y<=m) l->update(x,y,nval,nval2);
		else l->update(x,m,nval,nval2),r->update(m+1,y,nval,nval2);
		l->value(), r->value();
		v=min(l->v,r->v);
	}
	spi rmq(int x,int y) {
		value();
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x,y);
		else if(y<=m) return l->rmq(x,y);
		else return min(l->rmq(x,m),r->rmq(m+1,y));
	}
	void set(int x) {
		A[x] = max(A[x], lazy[2]);
		if(s==e) {
			v = spi(INF, pi(0, -1));
			return;
		}
		if(x>m) r->set(x);
		else l->set(x);
		v = min(l->v, r->v);
	}
} *seg;
void update(int x,int y,pi nval,pi nval2=pi(0,0)) {
	x=cy(x), y=cy(y);
	if(x<=y) seg->update(x,y,nval,nval2);
	else seg->update(x,n-1,nval,nval2), seg->update(0,y,nval,nval2);
}
spi rmq(int x,int y) {
	x=cy(x), y=cy(y);
	if(x<=y) return seg->rmq(x, y);
	else return min(seg->rmq(x, n-1), seg->rmq(0, y));
}
struct node2 {
	int s,e,m;
	pi v;
	node2*l,*r;
	node2(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v = pi(-INF, -1);
		if(s^e)l=new node2(s,m),r=new node2(m+1,e);
	}
	pi rmq(int x,int y) {
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x, y);
		else if(y<=m) return l->rmq(x, y);
		else return max(l->rmq(x, m), r->rmq(m+1, y));
	}
	void set(int x) {
		if(s==e) {
			v = pi(A[s], s);
			return;
		}
		if(x>m) r->set(x);
		else l->set(x);
		v = max(l->v, r->v);
	}
} *seg2;
struct tree {
	int p[18][MAXN*2];
	bitset<MAXN*2> r;
	vector<int> v[MAXN*2];
	tree() {
		mmst(p, 0);
		FOR(i,0,2*n-1) p[0][i] = 2*n;
	}
	void add(int x,int y) {
		if(y==-1||x==y) return;
		v[y].eb(x), p[0][x] = y;
	}
	void solve() {
		FOR(j,1,17) FOR(i,0,2*n-1) if(p[j-1][i]==2*n) p[j][i]=2*n; else p[j][i]=p[j-1][p[j-1][i]];
	}
	inline int h(int x,int l) {
		DEC(i,17,0) if(p[i][x] < l) x = p[i][x];
		return p[0][x];
	}
} t[2];
void init(int K, std::vector<int> r) { k=K, R=r;
	n=r.size();
	seg=new node(0, n-1);
	FOR(i,0,n-1) if(r[i]==0) update(i+1, i+k-1, pi(1, 1));
	while(1) {
		start = seg->rmq(0, n-1).s.s;
		if(start == -1) break;
		seg->set(start);
		update(start+1, start+k-1, pi(A[start]+1, 2), pi(-1, 1));
		update(start-k+1, start-1, pi(A[start]+1, 2), pi(-1, 0));
		vector<int> tmp;
		while(1) {
			spi x = rmq(start-k+1, start-1);
			if(x.f == 0) {
				tmp.eb(x.s.s);
				update(x.s.s+1, x.s.s+k-1, pi(1, 1));
				update(x.s.s, x.s.s, pi(1, 0));
			} else break;
		}
		for(auto i:tmp) update(i, i, pi(-1, 0));
	}
	vector<int> p;
	FOR(i,0,n-1) p.eb(i), p.eb(i+n), A[i+n]=A[i];
	sort(all(p), [](int x,int y){return A[x]<A[y];});
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->rmq(i, min(2*n-1, i+k-1)).s; // connect to shortest tower within k that is taller than you
		t[0].add(i, target);
		seg2->set(i);
	}
	reverse(all(p));
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->rmq(i, min(2*n-1, i+k-1)).s;
		t[1].add(i, target);
		A[i]=-A[i], seg2->set(i), A[i]=-A[i];
	}
	FOR(i,0,1) t[i].solve();
}
int compare_plants(int x, int y) {
	if(dist(x, y) < k) {
		return A[x] < A[y] ? 1 : -1;
	}
	int i = t[0].h(x, y);
	if(i <= y+k-1 && A[y] <= A[i]) {
		return -1;
	}
	i = t[1].h(x, y);
	if(i <= y+k-1 && A[y] >= A[i]) {
		return 1;
	}
	swap(x, y);
	y += n;
	i = t[0].h(x, y);
	if(i <= min(2*n-1, y+k-1) && A[y] <= A[i]) {
		return 1;
	}
	i = t[1].h(x, y);
	if(i <= min(2*n-1, y+k-1) && A[y] >= A[i]) {
		return -1;
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 43 ms 75628 KB Output is correct
2 Correct 42 ms 75628 KB Output is correct
3 Correct 41 ms 75628 KB Output is correct
4 Incorrect 45 ms 75628 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 43 ms 75628 KB Output is correct
2 Correct 44 ms 75628 KB Output is correct
3 Correct 48 ms 75516 KB Output is correct
4 Correct 46 ms 75628 KB Output is correct
5 Correct 45 ms 75628 KB Output is correct
6 Correct 52 ms 76268 KB Output is correct
7 Correct 159 ms 81516 KB Output is correct
8 Correct 47 ms 75756 KB Output is correct
9 Correct 49 ms 76268 KB Output is correct
10 Correct 140 ms 81516 KB Output is correct
11 Correct 132 ms 81388 KB Output is correct
12 Correct 138 ms 81516 KB Output is correct
13 Correct 141 ms 81516 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 43 ms 75628 KB Output is correct
2 Correct 44 ms 75628 KB Output is correct
3 Correct 48 ms 75516 KB Output is correct
4 Correct 46 ms 75628 KB Output is correct
5 Correct 45 ms 75628 KB Output is correct
6 Correct 52 ms 76268 KB Output is correct
7 Correct 159 ms 81516 KB Output is correct
8 Correct 47 ms 75756 KB Output is correct
9 Correct 49 ms 76268 KB Output is correct
10 Correct 140 ms 81516 KB Output is correct
11 Correct 132 ms 81388 KB Output is correct
12 Correct 138 ms 81516 KB Output is correct
13 Correct 141 ms 81516 KB Output is correct
14 Correct 303 ms 90568 KB Output is correct
15 Correct 3525 ms 199644 KB Output is correct
16 Correct 302 ms 90696 KB Output is correct
17 Correct 3567 ms 200700 KB Output is correct
18 Correct 1477 ms 199240 KB Output is correct
19 Correct 1613 ms 199440 KB Output is correct
20 Correct 2939 ms 202612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 45 ms 75628 KB Output is correct
2 Correct 55 ms 75628 KB Output is correct
3 Incorrect 134 ms 79660 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 48 ms 75628 KB Output is correct
2 Correct 48 ms 75628 KB Output is correct
3 Incorrect 47 ms 75628 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 45 ms 75628 KB Output is correct
2 Correct 44 ms 75628 KB Output is correct
3 Incorrect 45 ms 75628 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 43 ms 75628 KB Output is correct
2 Correct 42 ms 75628 KB Output is correct
3 Correct 41 ms 75628 KB Output is correct
4 Incorrect 45 ms 75628 KB Output isn't correct
5 Halted 0 ms 0 KB -