Submission #355091

# Submission time Handle Problem Language Result Execution time Memory
355091 2021-01-22T09:00:51 Z ryansee Comparing Plants (IOI20_plants) C++14
30 / 100
4000 ms 276088 KB
#include "plants.h"
 
#include "bits/stdc++.h"
using namespace std;
 
#define FAST ios_base::sync_with_stdio(false); cin.tie(0);
#define pb push_back
#define eb emplace_back
#define ins insert
#define f first
#define s second
#define cbr cerr<<"hi\n"
#define mmst(x, v) memset((x), v, sizeof ((x)))
#define siz(x) ll(x.size())
#define all(x) (x).begin(), (x).end()
#define lbd(x,y) (lower_bound(all(x),y)-x.begin())
#define ubd(x,y) (upper_bound(all(x),y)-x.begin())
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
inline long long rand(long long x, long long y) { return rng() % (y+1-x) + x; } //inclusivesss
string inline to_string(char c) {string s(1,c);return s;} template<typename T> inline T gcd(T a,T b){ return a==0?llabs(b):gcd(b%a,a); }
 
using ll=long long; 
using ld=long double;
#define FOR(i,s,e) for(ll i=s;i<=ll(e);++i)
#define DEC(i,s,e) for(ll i=s;i>=ll(e);--i)
using pi=pair<ll,ll>; using spi=pair<ll,pi>; using dpi=pair<pi,pi>; 
 
long long LLINF = 1e18;
int INF = 1e9+1e6;
#define MAXN (200002)
 
int n, start, k;
vector<int> R;
ll A[MAXN*2];
inline ll cy(ll x) {
	x %= n, x += n, x %= n; return x;
}
ll dist(int x,int y) {
	if(x > y) swap(x, y);
	return min(y-x, n-y+x);	
}

struct node {
	int s,e,m;
	spi v;
	ll lazy[3];
	node*l,*r;
	node(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v=spi(LLINF, pi(0, -1)), mmst(lazy, 0);
		if(s^e)l=new node(s,m),r=new node(m+1,e),v=min(l->v,r->v);
		else v=spi(R[s], pi(0, s));
	}
	void value() {
		v.f += lazy[0], v.s.f += lazy[1];
		if(s^e) FOR(i,0,1) l->lazy[i]+=lazy[i], r->lazy[i]+=lazy[i];
		lazy[0]=lazy[1]=0;
	}
	void update(int x,int y,pi nval) {
		if(s==x&&e==y) {
			if(nval.s <= 1) lazy[nval.s] += nval.f;
			else lazy[nval.s] = max(lazy[nval.s], nval.f);
			return;
		}
		if(x>m) r->update(x,y,nval);
		else if(y<=m) l->update(x,y,nval);
		else l->update(x,m,nval),r->update(m+1,y,nval);
		l->value(), r->value();
		v=min(l->v,r->v);
	}
	spi rmq(int x,int y) {
		value();
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x,y);
		else if(y<=m) return l->rmq(x,y);
		else return min(l->rmq(x,m),r->rmq(m+1,y));
	}
	void set(int x,ll add=0) {
		value();
		add = max(add, lazy[2]);
		if(s==e) {
			A[s] = add;
			v = spi(LLINF, pi(0, -1));
			return;
		}
		if(x>m) r->set(x, add);
		else l->set(x, add);
		l->value(), r->value();
		v = min(l->v, r->v);
	}
} *seg;
void update(int x,int y,pi nval) {
	x=cy(x), y=cy(y);
	if(x<=y) seg->update(x,y,nval);
	else seg->update(x,n-1,nval), seg->update(0,y,nval);
}
spi rmq(int x,int y) {
	x=cy(x), y=cy(y);
	if(x<=y) return seg->rmq(x, y);
	else return min(seg->rmq(x, n-1), seg->rmq(0, y));
}
struct node2 {
	int s,e,m;
	array<pi, 2> v;
	node2*l,*r;
	node2(int S,int E){
		s=S,e=E,m=(s+e)>>1;
		v = {pi(INF, -1), pi(-INF, -1)};
		if(s^e)l=new node2(s,m),r=new node2(m+1,e);
	}
	array<pi, 2> comb(array<pi, 2> x,array<pi, 2> y) {
		return array<pi, 2> {min(x[0], y[0]), max(x[1], y[1])};
	}
	array<pi, 2> rmq(int x,int y) {
		if(s==x&&e==y) return v;
		if(x>m) return r->rmq(x, y);
		else if(y<=m) return l->rmq(x, y);
		else return comb(l->rmq(x, m), r->rmq(m+1, y));
	}
	ll mx(int x,int y) {
		if(x <= y) return rmq(x, y)[1].s;
		else assert(0);
	}
	ll mi(int x,int y) {
		if(x <= y) return rmq(x, y)[0].s;
		else assert(0);
	}
	void set(int x) {
		if(s==e) {
			v = {pi(A[s], s), pi(A[s], s)};
			return;
		}
		if(x>m) r->set(x);
		else l->set(x);
		v = comb(l->v, r->v);
	}
} *seg2;
struct tree {
	int p[MAXN*2][19];
	bitset<MAXN*2> r;
	vector<int> v[MAXN*2];
	tree() {
		mmst(p, 0), r.set();
	}
	void add(int x,int y) {
		if(y==-1||x==y) return;
		r[x]=0, v[y].eb(x);
	}
	void solve() {
		function<void(ll)>dfs=[&](int x) {
			for(auto i:v[x]) p[i][0]=x, dfs(i);
		};
		FOR(i,0,2*n-1) if(r[i]) p[i][0]=2*n, dfs(i);
		FOR(j,1,18) FOR(i,0,2*n-1) if(p[i][j-1]==2*n) p[i][j]=2*n; else p[i][j]=p[p[i][j-1]][j-1];
	}
	ll h(int x,int l) {
		DEC(i,18,0) if(p[x][i] < l) x = p[x][i];
		return p[x][0]; 
	}
} t[2];
void init(int K, std::vector<int> r) { k=K, R=r;
	n=r.size();
	seg=new node(0, n-1);
	FOR(i,0,n-1) if(r[i]==0) update(i+1, i+k-1, pi(1, 1));
	while(1) {
		start = seg->rmq(0, n-1).s.s;
		if(start == -1) break;
		seg->set(start);
		update(start+1, start+k-1, pi(A[start]+1, 2));
		update(start+1, start+k-1, pi(-1, 1));
		update(start-k+1, start-1, pi(A[start]+1, 2));
		update(start-k+1, start-1, pi(-1, 0));
		vector<int> tmp;
		while(1) {
			spi x = rmq(start-k+1, start-1);
			if(x.f == 0) {
				tmp.eb(x.s.s);
				update(x.s.s+1, x.s.s+k-1, pi(1, 1));
				update(x.s.s, x.s.s, pi(1, 0));
			} else break;
		}
		for(auto i:tmp) update(i, i, pi(-1, 0));
	}
	/* dp[0][0]=dp[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	FOR(i,1,n-1) {
		// FOR(jj,i-k+1,i-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp[0][i] |= dp[0][j];
			// else dp[1][i] |= dp[1][j];
		// }
		if(i >= k) FOR(j,0,1) if(dp[j][i-k]) fw[j].update(A[i-k], -1);
		dp[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp[j][i]) fw[j].update(A[i], 1);
	}
	fw[0]=fen(), fw[1]=fen();
	dp2[0][0]=dp2[1][0]=1;
	FOR(i,0,1) fw[i].update(A[0], 1);
	DEC(ii,-1,-n+1) { int i=cy(ii);
		// FOR(jj,i+1,i+k-1) { int j=cy(jj);
			// assert(A[i] ^ A[j]);
			// if(A[i] < A[j]) dp2[0][i] |= dp2[0][j];
			// else dp2[1][i] |= dp2[1][j];
		// }
		int t = cy(i + k);
		if(t > i || t == 0) {
			FOR(j,0,1) if(dp2[j][t]) fw[j].update(A[t], -1);
		}
		dp2[0][i] = fw[0].sum(A[i]+1, MAXN-2) > 0;
		dp2[1][i] = fw[1].sum(0, A[i]-1) > 0;
		FOR(j,0,1) if(dp2[j][i]) fw[j].update(A[i], 1);
	} */
	
	vector<int> p;
	FOR(i,0,n-1) p.eb(i), p.eb(i+n), A[i+n]=A[i];
	sort(all(p), [](int x,int y){return A[x]<A[y];});
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->mx(i, min(2*n-1, i+k-1)); // connect to shortest tower within k that is taller than you
		t[0].add(i, target);
		seg2->set(i);
	}
	
	sort(all(p), [](int x,int y){return A[x]>A[y];});
	seg2=new node2(0, 2*n-1);
	for(auto i:p) {
		int target = seg2->mi(i, min(2*n-1, i+k-1));
		t[1].add(i, target);
		seg2->set(i);
	}
	// FOR(i,0,n-1) {
		// int target = seg2->mi(i, i-k+1);
		// t[2].add(i, target);
	// }
	// FOR(i,0,n-1) {
		// int target = seg2->mx(i, i-k+1);
		// t[3].add(i, target);
	// }
	FOR(i,0,1) t[i].solve();
}
int compare_plants(int x, int y) {
	/* if(x == 0) {
		if(dp[0][y] || dp2[0][y]) return -1;
		else if(dp[1][y] || dp2[1][y]) return 1;
		else return 0;
	}
	if(n > 300 || reach[x][y] || reach[y][x]) return A[x] < A[y] ? 1 : -1;
	else return 0; */
	
	if(dist(x, y) < k) {
		return A[x] < A[y] ? 1 : -1;
	}
	
	// FOR(i,y,y+k-1) {
		// if(A[y] <= A[i]) {
			// if(t[0].isp(i, x)) { assert(A[i] < A[x]); return -1; }
		// }
	// }
	int i = t[0].h(x, y);
	if(i <= y+k-1 && A[y] <= A[i]) {
		assert(A[i] < A[x]);
		return -1;
	}
	// FOR(i,y,y+k-1) {
		// if(A[y] >= A[i]) {
			// if(t[1].isp(i, x)) { assert(A[x] < A[i]); return 1; }
		// }
	// }
	i = t[1].h(x, y);
	if(i <= y+k-1 && A[y] >= A[i]) {
		assert(A[x] < A[i]);
		return 1;
	}
	swap(x, y);
	y += n;
	// FOR(i,y,min(2*n-1, y+k-1)) {
		// if(A[y] <= A[i]) {
			// if(t[0].isp(i, x)) { assert(A[i] < A[x]); return 1; }
		// }
	// }
	i = t[0].h(x, y);
	if(i <= min(2*n-1, y+k-1) && A[y] <= A[i]) {
		assert(A[i] < A[x]);
		return 1;
	}
	// FOR(i,y,min(2*n-1, y+k-1)) {
		// if(A[y] >= A[i]) {
			// if(t[1].isp(i, x)) { assert(A[x] < A[i]); return -1; }
		// }
	// }
	i = t[1].h(x, y);
	if(i <= min(2*n-1, y+k-1) && A[y] >= A[i]) {
		assert(A[x] < A[i]);
		return -1;
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 44 ms 78828 KB Output is correct
2 Correct 48 ms 78700 KB Output is correct
3 Correct 50 ms 78700 KB Output is correct
4 Correct 44 ms 78700 KB Output is correct
5 Correct 44 ms 78700 KB Output is correct
6 Correct 137 ms 81516 KB Output is correct
7 Correct 309 ms 99792 KB Output is correct
8 Correct 2089 ms 263516 KB Output is correct
9 Correct 2175 ms 263772 KB Output is correct
10 Correct 1906 ms 263772 KB Output is correct
11 Correct 1735 ms 265648 KB Output is correct
12 Correct 1654 ms 270036 KB Output is correct
13 Correct 1518 ms 276024 KB Output is correct
14 Correct 1600 ms 276088 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 44 ms 78700 KB Output is correct
2 Correct 45 ms 78700 KB Output is correct
3 Correct 44 ms 78700 KB Output is correct
4 Correct 44 ms 78700 KB Output is correct
5 Correct 45 ms 78828 KB Output is correct
6 Correct 62 ms 79724 KB Output is correct
7 Correct 179 ms 86380 KB Output is correct
8 Correct 53 ms 78976 KB Output is correct
9 Correct 54 ms 79724 KB Output is correct
10 Correct 166 ms 86252 KB Output is correct
11 Correct 144 ms 86380 KB Output is correct
12 Correct 142 ms 86636 KB Output is correct
13 Correct 156 ms 86252 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 44 ms 78700 KB Output is correct
2 Correct 45 ms 78700 KB Output is correct
3 Correct 44 ms 78700 KB Output is correct
4 Correct 44 ms 78700 KB Output is correct
5 Correct 45 ms 78828 KB Output is correct
6 Correct 62 ms 79724 KB Output is correct
7 Correct 179 ms 86380 KB Output is correct
8 Correct 53 ms 78976 KB Output is correct
9 Correct 54 ms 79724 KB Output is correct
10 Correct 166 ms 86252 KB Output is correct
11 Correct 144 ms 86380 KB Output is correct
12 Correct 142 ms 86636 KB Output is correct
13 Correct 156 ms 86252 KB Output is correct
14 Correct 397 ms 100048 KB Output is correct
15 Execution timed out 4107 ms 264284 KB Time limit exceeded
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 45 ms 78700 KB Output is correct
2 Correct 46 ms 78700 KB Output is correct
3 Correct 162 ms 83516 KB Output is correct
4 Correct 2047 ms 270740 KB Output is correct
5 Correct 2742 ms 270556 KB Output is correct
6 Execution timed out 4042 ms 270100 KB Time limit exceeded
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 47 ms 78716 KB Output is correct
2 Correct 45 ms 78700 KB Output is correct
3 Correct 45 ms 78700 KB Output is correct
4 Correct 46 ms 78700 KB Output is correct
5 Correct 45 ms 78700 KB Output is correct
6 Correct 47 ms 78828 KB Output is correct
7 Correct 74 ms 79724 KB Output is correct
8 Correct 64 ms 79596 KB Output is correct
9 Correct 70 ms 79596 KB Output is correct
10 Correct 71 ms 79596 KB Output is correct
11 Correct 72 ms 79596 KB Output is correct
12 Correct 69 ms 79596 KB Output is correct
13 Correct 69 ms 79596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 46 ms 78700 KB Output is correct
2 Correct 45 ms 78700 KB Output is correct
3 Correct 47 ms 78700 KB Output is correct
4 Correct 45 ms 78700 KB Output is correct
5 Correct 54 ms 79596 KB Output is correct
6 Correct 3505 ms 268460 KB Output is correct
7 Execution timed out 4088 ms 268396 KB Time limit exceeded
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 44 ms 78828 KB Output is correct
2 Correct 48 ms 78700 KB Output is correct
3 Correct 50 ms 78700 KB Output is correct
4 Correct 44 ms 78700 KB Output is correct
5 Correct 44 ms 78700 KB Output is correct
6 Correct 137 ms 81516 KB Output is correct
7 Correct 309 ms 99792 KB Output is correct
8 Correct 2089 ms 263516 KB Output is correct
9 Correct 2175 ms 263772 KB Output is correct
10 Correct 1906 ms 263772 KB Output is correct
11 Correct 1735 ms 265648 KB Output is correct
12 Correct 1654 ms 270036 KB Output is correct
13 Correct 1518 ms 276024 KB Output is correct
14 Correct 1600 ms 276088 KB Output is correct
15 Correct 44 ms 78700 KB Output is correct
16 Correct 45 ms 78700 KB Output is correct
17 Correct 44 ms 78700 KB Output is correct
18 Correct 44 ms 78700 KB Output is correct
19 Correct 45 ms 78828 KB Output is correct
20 Correct 62 ms 79724 KB Output is correct
21 Correct 179 ms 86380 KB Output is correct
22 Correct 53 ms 78976 KB Output is correct
23 Correct 54 ms 79724 KB Output is correct
24 Correct 166 ms 86252 KB Output is correct
25 Correct 144 ms 86380 KB Output is correct
26 Correct 142 ms 86636 KB Output is correct
27 Correct 156 ms 86252 KB Output is correct
28 Correct 397 ms 100048 KB Output is correct
29 Execution timed out 4107 ms 264284 KB Time limit exceeded
30 Halted 0 ms 0 KB -